Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene. 2004;337:1–13.
Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol. 2013;32:249–70.
Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, Dong W. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965.
PubMed PubMed Central Google Scholar
Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog. 2006;5:14.
PubMed PubMed Central Google Scholar
López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, Valcárcel-Ares MN. Mitochondrial dysfunction and the inflammatory response. Mitochondrion. 2013;13:106–18.
Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radical Biol Med. 2019;132:73–82.
Abbas M, Monireh M. The role of reactive oxygen species in immunopathogenesis of rheumatoid arthritis. Iranian J Allergy Asthma Immunol. 2008; 195–202
McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Radical Biol Med. 2018;125:15–24.
Sorce S, Krause K-H. NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal. 2009;11:2481–504.
Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid Med Cell Longev. 2016;2016:8590578.
PubMed PubMed Central Google Scholar
Drose S, Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem. 2008;283:21649–54.
Lanciano P, Khalfaoui-Hassani B, Selamoglu N, Ghelli A, Rugolo M, Daldal F. Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study. Biochim et Biophys Acta (BBA) Bioenerg. 2013;1827:1332–9.
Muller F. The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging. J Am Aging Assoc. 2000;23:227–53.
CAS PubMed PubMed Central Google Scholar
Watson J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol. 2013;3:120144.
PubMed PubMed Central Google Scholar
Yang Y, Karakhanova S, Hartwig W, D’Haese JG, Philippov PP, Werner J, Bazhin AV. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol. 2016;231:2570–81.
Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.
Duan D, Guo X, Tian J, Li M, Jin X, Wang Z, Wang L, Yan Y, Xiao J, Song P, Wang X. Targeting thioredoxin reductase by eupalinilide B promotes apoptosis of colorectal cancer cells in vitro and in vivo. Chem Biol Interact. 2024;399:111137.
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev. 2021;41:342–94.
Ghosh K, De S, Das S, Mukherjee S, Sengupta Bandyopadhyay S. Withaferin A induces ROS-mediated paraptosis in human breast cancer cell-lines MCF-7 and MDA-MB-231. PLoS ONE. 2016;11:e0168488.
PubMed PubMed Central Google Scholar
Cao X-H, Wang A-H, Wang C-L, Mao D-Z, Lu M-F, Cui Y-Q, Jiao R-Z. Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact. 2010;183:357–62.
Kallio A, Zheng A, Dahllund J, Heiskanen KM, Härkönen P. Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis. 2005;10:1395–410.
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144–8.
Mitchell P. The protonmotive Q cycle: a general formulation. FEBS Lett. 1975;59:137–9.
Mitchell P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol. 1976;62:327–67.
Brandt U, Trumpower B. The protonmotive Q cycle in mitochondria and bacteria. Crit Rev Biochem Mol Biol. 1994;29:165–97.
Crofts AR, Hong S, Ugulava N, Barquera B, Gennis R, Guergova-Kuras M, Berry EA. Pathways for proton release during ubihydroquinone oxidation by the bc(1) complex. Proc Natl Acad Sci USA. 1999;96:10021–6.
CAS PubMed PubMed Central Google Scholar
Crofts AR, Shinkarev VP, Kolling DR, Hong S. The modified Q-cycle explains the apparent mismatch between the kinetics of reduction of cytochromes c1 and bH in the bc1 complex. J Biol Chem. 2003;278:36191–201.
Osyczka A, Moser CC, Dutton PL. Fixing the Q cycle. Trends Biochem Sci. 2005;30:176–82.
Crofts AR, Guergova-Kuras M, Huang L, Kuras R, Zhang Z, Berry EA. Mechanism of ubiquinol oxidation by the bc1 complex: role of the iron sulfur protein and its mobility. Biochemistry. 1999;38:15791–806.
Zhang Z, Huang L, Shulmeister VM, Chi Y-I, Kim KK, Hung L-W, Crofts AR, Berry EA, Kim S-H. Electron transfer by domain movement in cytochrome bc1. Nature. 1998;392:677–84.
Hagras MA, Hayashi T, Stuchebrukhov AA. Quantum calculations of electron tunneling in respiratory complex III. J Phys Chem B. 2015;119:14637–51.
Hagras MA. Respiratory complex III: a bioengine with a ligand-triggered electron-tunneling gating mechanism. J Phys Chem B. 2024;128(4):990–1000.
M. Hagras, A. Stuchebrukhov, Inhibition of respiratory complex III by ligands that interact with a regulatory switch, in, United States Patent 11,058,645, 2021, 2021.
Hagras MA, Stuchebrukhov AA. Internal switches modulating electron tunneling currents in respiratory complex III. Biochim et Biophys Acta (BBA) Bioenerg. 2016;1857:749–58.
Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA. The conserved domain database in 2023. Nucl Acids Res. 2023;51:D384–8.
Hagras MA, Stuchebrukhov AA. Novel inhibitors for a novel binding site in respiratory complex III. J Phys Chem B. 2016;120:2701–8.
Woo J-H, Kim Y-H, Choi Y-J, Kim D-G, Lee K-S, Bae JH, Min DS, Chang J-S, Jeong Y-J, Lee YH. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-X L and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis. 2003;24:1199–208.
Uğuz AC, Öz A, Nazıroğlu M. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.
Gong G, Qin Y Fau - Huang W, Huang W Fau – Zhou S, Zhou S Fau – Yang X, Yang X Fau – Li D, Li D. Rutin inhibits hydrogen peroxide-induced apoptosis through regulating reactive oxygen species mediated mitochondrial dysfunction pathway in human umbilical vein endothelial cells.
Jeong CH, Joo SH. Downregulation of reactive oxygen species in apoptosis. J Cancer Prevent. 2016;21:13–20.
Liu B, Tan X, Liang J, Wu S, Liu J, Zhang Q, Zhu R. A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells. Sci Rep. 2014;4:7041.
CAS PubMed PubMed Central Google Scholar
Young TA, Cunningham CC, Bailey SM. Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Arch Biochem Biophys. 2002;405:65–72.
Schönfeld P, Wojtczak L. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim et Biophys Acta (BBA) Bioenerg. 2007;1767:1032–40.
Comments (0)