Computational biology meets oncology: designing custom protein and peptide binders to outsmart cancer

Aggarwal S. Targeted cancer therapies. Nat Rev Drug Discov. 2010;9(6):427–8.

CAS  PubMed  Google Scholar 

Uzoeto HO, et al. Computer-aided molecular modeling and structural analysis of the human centromere protein–HIKM complex. Beni-Suef Univ J Basic Appl Sci. 2022;11(1):1–18.

Google Scholar 

Durojaye OA, et al. Csc01 shows promise as a potential inhibitor of the oncogenic G13D mutant of KRAS: an in silico approach. Amino Acids. 2023;55(12):1745–64.

CAS  PubMed  Google Scholar 

Durojaye OA, et al. Gedunin modification for anticancer properties improvement against the human NAD kinase. Int J Latest Res Eng Technol. 2018;4(11):8–14.

Google Scholar 

Gupta GK, et al. Perspectives on triple-negative breast cancer: current treatment strategies, unmet needs, and potential targets for future therapies. Cancers. 2020;12(9):2392.

CAS  PubMed  PubMed Central  Google Scholar 

Okoli PT, et al. An in-silico pharmacokinetics study on Cis-heptadeca-1, 9-Diene-4, 6-Diyne-3, 8-Diol: a nutraceutical compound with anticancer properties. Asian Food Sci J. 2019;7(3):1–7.

Google Scholar 

Sedzro DM, et al. Identifying potential p53-MDM2 interaction antagonists: an integrated approach of pharmacophore-based virtual screening, interaction fingerprinting, MD simulation and DFT studies. ChemistrySelect. 2022;7(39):e202202380.

CAS  Google Scholar 

Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biol Targets Ther. 2019;13:33–51.

CAS  Google Scholar 

Kemshead J, Hopkins K. Uses and limitations of monoclonal antibodies (MoAbs) in the treatment of malignant disease: a review. J R Soc Med. 1993;86(4):219–24.

CAS  PubMed  PubMed Central  Google Scholar 

Evalde N, et al. Clinical diagnosis of disease states using enzymes and proteins. Asian J Biochem Genet Mol Biol. 2018;1:1–6.

Google Scholar 

Durojaye OA, et al. Investigation of the MDM2-binding potential of de novo designed peptides using enhanced sampling simulations. Int J Biol Macromol. 2024;269(Pt 2):131840.

CAS  PubMed  Google Scholar 

Durojaye OA. Delineation of the CENP-LN sub-complex dissociation mechanism upon multisite phosphorylation during mitosis. J Biomol Struct Dyn. 2023;42:8983–9001.

PubMed  Google Scholar 

Xiong W, et al. Protein engineering design from directed evolution to de novo synthesis. Biochem Eng J. 2021;174:108096.

CAS  Google Scholar 

Macdonald GJ. AI and computational design advance protein engineering: with data-driven methods such as de novo protein design and iterative engineering, drug development is becoming more deliberate and systematic. Genet Eng Biotechnol News. 2023;43(2):26–8.

Google Scholar 

Chandrasekar V, et al. Artificial intelligence enabled biomineralization for eco-friendly nanomaterial synthesis: charting future trends. Nano Select. 2025;2025:e202400118.

Google Scholar 

Singh AV, et al. AI and ML-based risk assessment of chemicals: predicting carcinogenic risk from chemical-induced genomic instability. Front Toxicol. 2024;6:1461587.

PubMed  PubMed Central  Google Scholar 

Korendovych IV, DeGrado WF. De novo protein design, a retrospective. Q Rev Biophys. 2020;53:e3.

CAS  PubMed  PubMed Central  Google Scholar 

Pan X, Kortemme T. Recent advances in de novo protein design: principles, methods, and applications. J Biol Chem. 2021;296:100558.

CAS  PubMed  PubMed Central  Google Scholar 

Varadi M, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50(D1):D439–44.

CAS  PubMed  Google Scholar 

Uzoeto HO, et al. AlphaFold-latest: revolutionizing protein structure prediction for comprehensive biomolecular insights and therapeutic advancements. Beni-Suef Univ J Basic Appl Sci. 2024;13(1):46.

Google Scholar 

Krishna R, et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science. 2024;384(6693):eadl2528.

CAS  PubMed  Google Scholar 

Wu K, et al. De novo design of modular peptide-binding proteins by superhelical matching. Nature. 2023;616(7957):581–9.

CAS  PubMed  PubMed Central  Google Scholar 

Marcos E, Silva DA. Essentials of de novo protein design: methods and applications. Wiley Interdiscip Rev Comput Mol Sci. 2018;8(6):e1374.

Google Scholar 

Kortemme T. De novo protein design—from new structures to programmable functions. Cell. 2024;187(3):526–44.

CAS  PubMed  PubMed Central  Google Scholar 

Arnold FH. Design by directed evolution. Acc Chem Res. 1998;31(3):125–31.

CAS  Google Scholar 

Durojaye OA. Intracellular proteome compartmentalization: a biotin ligase-based proximity labeling approach. Cell Biosci. 2021;11(1):165.

CAS  PubMed  PubMed Central  Google Scholar 

Lutz S. Beyond directed evolution—semi-rational protein engineering and design. Curr Opin Biotechnol. 2010;21(6):734–43.

CAS  PubMed  PubMed Central  Google Scholar 

Chica RA, Doucet N, Pelletier JN. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol. 2005;16(4):378–84.

CAS  PubMed  Google Scholar 

Karanicolas J, et al. A de novo protein binding pair by computational design and directed evolution. Mol Cell. 2011;42(2):250–60.

CAS  PubMed  PubMed Central  Google Scholar 

Woolfson DN. A brief history of de novo protein design: minimal, rational, and computational. J Mol Biol. 2021;433(20):167160.

CAS  PubMed  Google Scholar 

Chen X, et al. A photo-caged cross-linker for identifying protein–protein interactions. ChemBioChem. 2024;25(24):e202400620.

CAS  PubMed  PubMed Central  Google Scholar 

Amani K. AfCycDesign: denovo design of macrocyclic peptides. 2023. https://neurosnap.ai/blog/post/afcycdesign-denovo-design-of-macrocyclic-peptides/64641b59bc6c7de17d113dcb?utm_source=chatgpt.com.

Roque ACA, Lowe CR. Advances and applications of de novo designed affinity ligands in proteomics. Biotechnol Adv. 2006;24(1):17–26.

CAS  PubMed  Google Scholar 

Ferrando J, Solomon LA. Recent progress using de novo design to study protein structure, design and binding interactions. Life. 2021;11(3):225.

CAS  PubMed  PubMed Central  Google Scholar 

Sormanni P, Aprile FA, Vendruscolo M. Third generation antibody discovery methods: in silico rational design. Chem Soc Rev. 2018;47(24):9137–57.

CAS  PubMed  Google Scholar 

Hummer AM, Abanades B, Deane CM. Advances in computational structure-based antibody design. Curr Opin Struct Biol. 2022;74:102379.

CAS  PubMed  Google Scholar 

Quijano-Rubio A, et al. The advent of de novo proteins for cancer immunotherapy. Curr Opin Chem Biol. 2020;56:119–28.

CAS  PubMed  Google Scholar 

Shanehsazzadeh A, et al. Unlocking de novo antibody design with generative artificial intelligence. BioRxiv. 2023;2023:2023.01.08.523187.

Google Scholar 

Leman JK, et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat Methods. 2020;17(7):665–80.

CAS  PubMed  Google Scholar 

Liu Y, Kuhlman B. RosettaDesign server for protein design. Nucleic Acids Res. 2006;34(suppl_2):W235–8.

CAS  PubMed  PubMed Central  Google Scholar 

Schmitz S, et al. Rosetta design with co-evolutionary information retains protein function. PLoS Comput Biol. 2021;17(1):e1008568.

CAS  PubMed  PubMed Central  Google Scholar 

Ford AS, Weitzner BD, Bahl CD. Integration of the Rosetta suite with the python software stack via reproducible packaging and core programming interfaces for distributed simulation. Protein Sci. 2020;29(1):43–51.

CAS  PubMed  Google Scholar 

Dauparas J, et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science. 2022;378(6615):49–56.

CAS 

Comments (0)

No login
gif