Bunin GR, Surawicz TS, Witman PA, Preston-Martin S, Davis F, Bruner JM. The descriptive epidemiology of craniopharyngioma. J Neurosurg. 1998;89:547–51.
Sterkenburg AS, Hoffmann A, Gebhardt U, Warmuth-Metz M, Daubenbüchel AMM, Müller HL. Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro Oncol. 2015;17:1029–38.
PubMed PubMed Central Google Scholar
Duff JM, Meyer FB, Ilstrup DM, Laws ER, Schleck CD, Scheithauer BW. Long-term outcomes for surgically resected craniopharyngiomas. Neurosurgery. 2000;46:291–305.
Dekkers OM, Biermasz NR, Smit JWA, Groot LE, Roelfsema F, Romijn JA, et al. Quality of life in treated adult craniopharyngioma patients. Eur J Endocrinol. 2006;154:483–9.
Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61:215–25 (discussion 226–9).
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.
PubMed PubMed Central Google Scholar
Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol. 1993;3:255–68.
Zülch KJ. Principles of the new World Health Organization (WHO) classification of brain tumors. Neuroradiology. 1980;19:59–66.
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23:1231–51.
CAS PubMed PubMed Central Google Scholar
An W, Li S, An Y, Lin Z. Molecular subtypes of adamantinomatous craniopharyngiomas. Neuro Oncol. 2025;27(5):1180–92.
PubMed PubMed Central Google Scholar
Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46:161–5.
CAS PubMed PubMed Central Google Scholar
Zhao C, Zhou Z, Zhang Y, Qi X, Wang X, Lin D, et al. Diagnosis and management of pediatric papillary craniopharyngiomas. World Neurosurg. 2022;165:e148–58.
Takagi K, Kikuchi K, Hiwatashi A, Togao O, Sangatsuda Y, Kuga D, et al. Papillary craniopharyngioma coexisting with an intratumoral abscess in a pediatric patient: a case report and review of the literature. Acta Radiol Open. 2021;10:205846012110306.
Hölsken A, Sill M, Merkle J, Schweizer L, Buchfelder M, Flitsch J, et al. Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol Commun. 2016;4:20.
PubMed PubMed Central Google Scholar
Goschzik T, Gessi M, Dreschmann V, Gebhardt U, Wang L, Yamaguchi S, et al. Genomic alterations of adamantinomatous and papillary craniopharyngioma. J Neuropathol Exp Neurol. 2017;76:126–34.
Wang X, Zhao C, Lin J, Liu H, Zeng Q, Chen H, et al. Multi-omics analysis of adamantinomatous craniopharyngiomas reveals distinct molecular subgroups with prognostic and treatment response significance. Chin Med J (Engl). 2023;137:859–70.
Gunderwala A, Cope N, Wang Z. Mechanism and inhibition of BRAF kinase. Curr Opin Chem Biol. 2022;71:102205.
CAS PubMed PubMed Central Google Scholar
Maloney RC, Zhang M, Liu Y, Jang H, Nussinov R. The mechanism of activation of MEK1 by B-Raf and KSR1. Cell Mol Life Sci. 2022;79:281.
CAS PubMed PubMed Central Google Scholar
Blakeley JO, Shannon K. Precision oncology for papillary craniopharyngioma. N Engl J Med. 2023;389:179–81.
Cantwell-Dorris ER, O’Leary JJ, Sheils OM. BRAFV600E: implications for carcinogenesis and molecular therapy. Mol Cancer Ther. 2011;10:385–94.
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther. 2023;8:455.
CAS PubMed PubMed Central Google Scholar
Haston S, Pozzi S, Carreno G, Manshaei S, Panousopoulos L, Gonzalez-Meljem JM, et al. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. Development. 2017;144:2141–52.
CAS PubMed PubMed Central Google Scholar
Mu W, Li S, Xu J, Guo X, Wu H, Chen Z, et al. Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat Commun. 2021;12:2288.
CAS PubMed PubMed Central Google Scholar
Clasadonte J, Prevot V. The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol. 2017;14:25–44.
Korf H-W, Møller M. Arcuate nucleus, median eminence, and hypophysial pars tuberalis. Handb Clin Neurol. 2021;180:227–51.
Prevot V, Nogueiras R, Schwaninger M. Tanycytes in the infundibular nucleus and median eminence and their role in the blood–brain barrier. Handb Clin Neurol. 2021;180:253–73.
Rodríguez EM, Blázquez JL, Guerra M. The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides. 2010;31:757–76.
Prieto R, Juratli TA, Bander ED, Santagata S, Barrios L, Brastianos PK, et al. Papillary craniopharyngioma: an integrative and comprehensive review. Endocr Rev. 2024;46:151–213.
Coy S, Rashid R, Lin J-R, Du Z, Donson AM, Hankinson TC, et al. Multiplexed immunofluorescence reveals potential PD-1/PD-L1 pathway vulnerabilities in craniopharyngioma. Neuro Oncol. 2018;20:1101–12.
CAS PubMed PubMed Central Google Scholar
Chen C, Wang Y, Zhong K, Jiang C, Wang L, Yuan Z, et al. Frequent B7–H3 overexpression in craniopharyngioma. Biochem Biophys Res Commun. 2019;514:379–85.
Tang M, Chen C, Wang G, Wang Y, Zhang Z, Li H, et al. Evaluation of B7–H3 targeted immunotherapy in a 3D organoid model of craniopharyngioma. Biomolecules. 2022;12:1744.
CAS PubMed PubMed Central Google Scholar
Jia Y, Ma L, Cai K, Zhang B, Wu W, Xiao Y, et al. Immune infiltration in aggressive papillary craniopharyngioma: high infiltration but low action. Front Immunol. 2022;13:995655.
CAS PubMed PubMed Central Google Scholar
Lin D, Wang Y, Zhou Z, Lin Z. Immune microenvironment of primary and recurrent craniopharyngiomas: a study of the differences and clinical significance. World Neurosurg. 2019;127:e212–20.
Matson DD, Crigler JF. Management of craniopharyngioma in childhood. J Neurosurg. 1969;30:377–90.
Hoffman HJ, Silva MD, Humphreys RP, Drake JM, Smith ML, Blaser SI. Aggressive surgical management of craniopharyngiomas in children. J Neurosurg. 1992;76:47–52.
Yaşargil MG, Curcic M, Kis M, Siegenthaler G, Teddy PJ, Roth P. Total removal of craniopharyngiomas. J Neurosurg. 1990;73:3–11.
Maira G, Anile C, Rossi GF, Colosimo C. Surgical treatment of craniopharyngiomas. Neurosurgery. 1995;36:715–24.
Sweet WH. Radical surgical treatment of craniopharyngioma. Neurosurgery. 1976;23:52–79.
Piloni M, Gagliardi F, Bailo M, Losa M, Boari N, Spina A, et al. Craniopharyngioma in pediatrics and adults. In: Sex Gend Factor Affect Metab Homeost Diabetes Obes. Cham: Springer International Publishing; 2023. p. 299–329.
Comments (0)