Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131:58–67. https://doi.org/10.1182/blood-2017-06-741033.
Article PubMed CAS Google Scholar
Maeda Y, Nishikawa H, Sugiyama D, Ha D, Hamaguchi M, Saito T, et al. Detection of self-reactive CD8⁺ T cells with an anergic phenotype in healthy individuals. Science. 2014;346:1536–40. https://doi.org/10.1126/science.aaa1292.
Article PubMed CAS Google Scholar
Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345:1623–7. https://doi.org/10.1126/science.1255904.
Article PubMed PubMed Central CAS Google Scholar
Janman D, Hinze C, Kennedy A, Halliday N, Waters E, Williams C, et al. Regulation of CTLA-4 recycling by LRBA and Rab11. Immunology. 2021;164:106–19. https://doi.org/10.1111/imm.13343.
Article PubMed PubMed Central CAS Google Scholar
Qureshi OS, Kaur S, Hou TZ, Jeffery LE, Poulter NS, Briggs Z, et al. Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem. 2012;287:9429–40. https://doi.org/10.1074/jbc.M111.304329.
Article PubMed PubMed Central CAS Google Scholar
Linterman MA, Denton AE, Divekar DP, Zvetkova I, Kane L, Ferreira C, et al. (2014) CD28 expression is required after T cell priming for helper T cell responses and protective immunity to infection. Elife 3:https://doi.org/10.7554/eLife.03180
Marengère LE, Waterhouse P, Duncan GS, Mittrücker HW, Feng GS, Mak TW. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science. 1996;272:1170–3. https://doi.org/10.1126/science.272.5265.1170.
Pompura SL, Dominguez-Villar M. The PI3K/AKT signaling pathway in regulatory T-cell development, stability, and function. J Leukoc Biol. 2018. https://doi.org/10.1002/jlb.2mir0817-349r.
Kubsch S, Graulich E, Knop J, Steinbrink K. Suppressor activity of anergic T cells induced by IL-10-treated human dendritic cells: association with IL-2- and CTLA-4-dependent G1 arrest of the cell cycle regulated by p27Kip1. Eur J Immunol. 2003;33:1988–97. https://doi.org/10.1002/eji.200323600.
Article PubMed CAS Google Scholar
Régnier P, Le Joncour A, Maciejewski-Duval A, Darrasse-Jèze G, Dolladille C, Meijers WC, et al. CTLA-4 Pathway Is Instrumental in Giant Cell Arteritis. Circ Res. 2023;133:298–312. https://doi.org/10.1161/CIRCRESAHA.122.322330.
Article PubMed CAS Google Scholar
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 2021;40:184. https://doi.org/10.1186/s13046-021-01987-7.
Article PubMed PubMed Central CAS Google Scholar
Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6. https://doi.org/10.1126/science.271.5256.1734.
Article PubMed CAS Google Scholar
Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A. 2003;100:4712–7. https://doi.org/10.1073/pnas.0830997100.
Article PubMed PubMed Central CAS Google Scholar
Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2003;100:8372–7. https://doi.org/10.1073/pnas.1533209100.
Article PubMed PubMed Central CAS Google Scholar
Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30:2046–54. https://doi.org/10.1200/jco.2011.38.4032.
Article PubMed CAS Google Scholar
Liu Y, Zheng P. Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy. Trends Pharmacol Sci. 2020;41:4–12. https://doi.org/10.1016/j.tips.2019.11.003.
Article PubMed CAS Google Scholar
Apol Á D, Winckelmann AA, Duus RB, Bukh J, Weis N (2023) The Role of CTLA-4 in T Cell Exhaustion in Chronic Hepatitis B Virus Infection. Viruses 15:https://doi.org/10.3390/v15051141
Kumar S, Verma AK, Das M, Dwivedi PD. A molecular insight of CTLA-4 in food allergy. Immunol Lett. 2013;149:101–9. https://doi.org/10.1016/j.imlet.2012.12.003.
Article PubMed CAS Google Scholar
Teigler JE, Zelinskyy G, Eller MA, Bolton DL, Marovich M, Gordon AD, et al. (2017) Differential Inhibitory Receptor Expression on T Cells Delineates Functional Capacities in Chronic Viral Infection. J Virol 91:https://doi.org/10.1128/jvi.01263-17
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52. https://doi.org/10.1038/nature12986.
Article PubMed PubMed Central CAS Google Scholar
Ali T, Grote P (2020) Beyond the RNA-dependent function of LncRNA genes. Elife 9:https://doi.org/10.7554/eLife.60583
Patop IL, Wüst S, Kadener S (2019) Past, present, and future of circRNAs. Embo j 38:e100836. https://doi.org/10.15252/embj.2018100836
Liu X, Tang C, Song X, Cheng L, Liu Y, Ding F, et al. Clinical value of CTLA4-associated microRNAs combined with inflammatory factors in the diagnosis of non-small cell lung cancer. Ann Clin Biochem. 2020;57:151–61. https://doi.org/10.1177/0004563220901564.
Article PubMed CAS Google Scholar
Shen K, Cui J, Wei Y, Chen X, Liu G, Gao X, et al. (2018) Effectiveness and safety of PD-1/PD-L1 or CTLA4 inhibitors combined with chemotherapy as a first-line treatment for lung cancer: A meta-analysis. J Thorac Dis 10:6636–52. https://doi.org/10.21037/jtd.2018.11.72
Kleinpeter P, Remy-Ziller C, Winter E, Gantzer M, Nourtier V, Kempf J, et al. (2019) By Binding CD80 and CD86, the Vaccinia Virus M2 Protein Blocks Their Interactions with both CD28 and CTLA4 and Potentiates CD80 Binding to PD-L1. J Virol 93:https://doi.org/10.1128/jvi.00207-19
Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front Oncol. 2018;8:86. https://doi.org/10.3389/fonc.2018.00086.
Article PubMed PubMed Central Google Scholar
Kipkeeva F, Muzaffarova T, Korotaeva A, Mansorunov D, Apanovich P, Nikulin M, et al. (2022) The Features of Immune Checkpoint Gene Regulation by microRNA in Cancer. Int J Mol Sci 23:https://doi.org/10.3390/ijms23169324
Skafi N, Fayyad-Kazan M, Badran B. Immunomodulatory role for MicroRNAs: Regulation of PD-1/PD-L1 and CTLA-4 immune checkpoints expression. Gene. 2020;754: 144888. https://doi.org/10.1016/j.gene.2020.144888.
Article PubMed CAS Google Scholar
Chen WX, Zhang ZG, Ding ZY, Liang HF, Song J, Tan XL, et al. (2016) MicroRNA-630 suppresses tumor metastasis through the TGF-β- miR-630-Slug signaling pathway and correlates inversely with poor prognosis in hepatocellular carcinoma. Oncotarget 7:22674–86. https://doi.org/10.18632/oncotarget.8047
Luo X, Dong J, He X, Shen L, Long C, Liu F, et al. MiR-155-5p exerts tumor-suppressing functions in Wilms tumor by targeting IGF2 via the PI3K signaling pathway. Biomed Pharmacother. 2020;125: 109880. https://doi.org/10.1016/j.biopha.2020.109880.
Article PubMed CAS Google Scholar
Dezfuli NK, Alipoor SD, Dalil Roofchayee N, Seyfi S, Salimi B, Adcock IM, et al. (2021) Evaluation Expression of miR-146a and miR-155 in Non-Small-Cell Lung Cancer Patients. Frontiers in Oncology 11:https://doi.org/10.3389/fonc.2021.715677
Gu X, Li X, Zhang X, Feng R, Zheng M, Liu L, et al. (2022) MicroRNA-mediated high expression of PDIA3 was correlated with poor prognosis of patients with LUAD. Genomics 114:110417. https://doi.org/10.1016/j.ygeno.2022.110417
Boldrini L, Giordano M, Niccoli C, Melfi F, Lucchi M, Mussi A, et al. Role of microRNA-33a in regulating the expression of PD-1 in lung adenocarcinoma. Cancer Cell Int. 2017;17:105. https://doi.org/10.1186/s12935-017-0474-y.
Article PubMed PubMed Central CAS Google Scholar
Baksh K, Weber J. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin Oncol. 2015;42:363–77. https://doi.org/10.1053/j.seminoncol.2015.02.015.
Article PubMed CAS Google Scholar
Xu S, Tao Z, Hai B, Liang H, Shi Y, Wang T, et al. miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun. 2016;7:11406. https://doi.org/10.1038/ncomms11406.
Comments (0)