Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA Cancer J Clin. 2023. https://doi.org/10.3322/caac.21763.
Barsouk A, Padala SA, Vakiti A, Mohammed A, Saginala K, Thandra KC, Pawla P, Barsouk A. Epidemiology, staging and management of prostate cancer. Med Sci. 2020. https://doi.org/10.3390/medsci8030028.
Bolla M, van Poppel H. Management of prostate cancer : a multidisciplinary approach. Cham: Springer; 2017.
Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today. 2010. https://doi.org/10.1016/j.drudis.2010.08.006.
Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.13304.
Article PubMed PubMed Central Google Scholar
Bousbaa H. Novel anticancer strategies. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics13020275.
Article PubMed PubMed Central Google Scholar
Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003. https://doi.org/10.1038/nrc1071.
Niemz M. Laser-tissue interactions. Cham: Springer; 2007.
Topaloglu N, Bakay E, Yünlü M, Onak G. Induced photo-cytotoxicity on prostate cancer cells with the photodynamic action of toluidine Blue ortho. Photodiagnosis Photodyn Ther. 2021. https://doi.org/10.1016/j.pdpdt.2021.102306.
Niculescu AG, Mihai GA. Photodynamic therapy—an up-to-date review. Appl Sci. 2021. https://doi.org/10.3390/app11083626.
Hamblin MR, Mróz P. Advances in photodynamic therapy: basic, translational, and clinical. Boston: Artech House; 2008.
Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell death pathways in photodynamic therapy of cancer. Cancers. 2011. https://doi.org/10.3390/cancers3022516.
Article PubMed PubMed Central Google Scholar
Topaloglu N, Yuksel S, Gulsoy M. Influence of different output powers on the efficacy of photodynamic therapy with 809 nm diode laser and indocyanine green. Opt Interact with Tissue Cells XXIV. 2013. https://doi.org/10.1117/12.2004523.
Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharm. 2021. https://doi.org/10.3390/pharmaceutics13091332.
Wu J. The Enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J Pers Med. 2021. https://doi.org/10.3390/jpm11080771.
Article PubMed PubMed Central Google Scholar
Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of resistance to photodynamic therapy. Curr Med Chem. 2011. https://doi.org/10.2174/092986711795843272.
Article PubMed PubMed Central Google Scholar
Rapozzi V, Jori G. Resistance to photodynamic therapy in cancer. Cham: Springer; 2015.
Shi X, Zhang CY, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases Wiley Interdiscip. Rev Nanomed Nanobiotechnol. 2019. https://doi.org/10.1002/wnan.1560.
Xu J, Gao J, Wei Q. Combination of photodynamic therapy with radiotherapy for cancer treatment. J Nanomater. 2016. https://doi.org/10.1155/2016/8507924.
Karami-Gadallo L, Ghoranneviss M, Ataie-Fashtami L, Pouladian M, Sardari D. Enhancement of cancerous cells treatment by applying cold atmospheric plasma and photo dynamic therapy simultaneously. Clin Plasma Med. 2016. https://doi.org/10.1016/j.cpme.2017.08.002.
Noghreiyan AV, Imanparast A, Ara ES, Soudmand S, Noghreiyan VV, Sazgarnia A. In-vitro investigation of cold atmospheric plasma induced photodynamic effect by Indocyanine green and Protoporphyrin IX. Photodiagnosis Photodyn Ther. 2020. https://doi.org/10.1016/j.pdpdt.2020.101822.
Wang M, Geilich BM, Keidar M, Webster TJ. Killing malignant melanoma cells with protoporphyrin IX-loaded polymersome-mediated photodynamic therapy and cold atmospheric plasma. Int J Nanomed. 2017. https://doi.org/10.2147/ijn.S129266.
Ha J, Kim Y. Photodynamic and cold atmospheric plasma combination therapy using polymeric nanoparticles for the synergistic treatment of cervical cancer. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22031172.
Article PubMed PubMed Central Google Scholar
Dompe C, Moncrieff L, Matys J, Grezech-Leśniak K, Kocherova I, Bryja A, Bruska M, Dominiak M, Mozdziak P, Skiba THI, Shibli JA, Volponi AA, Kempisty B, Dyszkiewiez-Konwinska M. Photobiomodulation-underlying mechanism and clinical applications. J Clin Med. 2020. https://doi.org/10.3390/jcm9061724.
Article PubMed PubMed Central Google Scholar
Huang YY, Chen ACH, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009. https://doi.org/10.2203/dose-response.09-027.Hamblin.
Article PubMed PubMed Central Google Scholar
Tam SY, Tam VCW, Ramkumar S, Khaw ML, Law HKW, Lee SWY. Review on the cellular mechanisms of low-level laser therapy use in oncology. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.01255.
Article PubMed PubMed Central Google Scholar
De Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016. https://doi.org/10.1109/jstqe.2016.2561201.
Article PubMed PubMed Central Google Scholar
Lima PLV, Pereira CV, Nissanka N, Arguello T, Gavini G, Maranduba CMC, Diaz F, Moraes CT. Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase. J Photochem Photobiol B Biol. 2019. https://doi.org/10.1016/j.jphotobiol.2019.03.015.
Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 2018. https://doi.org/10.1111/php.12864.
Article PubMed PubMed Central Google Scholar
Mason MG, Nicholls P, Wilson MT, Cooper CE. Nitric oxide inhibiton of respiration involves both competitive (heme) andn noncompetititve (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci. 2006. https://doi.org/10.1073/pnas.0506562103.
Article PubMed PubMed Central Google Scholar
Young SR, Dyson M, Bolton P. Effect of light on calcium uptake by macrophages. Laser Ther. 1990. https://doi.org/10.5978/islsm.90-OR-01.
Wang L, Zhang D, Schwarz W. TRPV channels in mast cells as a target for low-level-laser therapy. Cells. 2014. https://doi.org/10.3390/cells3030662.
Article PubMed PubMed Central Google Scholar
Sommer AP, Zhu D, Scharnweber T. Laser modulated transmembrane convection: Implementation in cancer chemotherapy. J Control Release. 2010. https://doi.org/10.1016/j.jconrel.2010.10.010.
Amaroli A, Ferrando S, Benedicenti S. Photobiomodulation Affects key cellular pathways of all life-forms: considerations on old and new laser light targets and the calcium issue. Photochem Photobiol. 2019. https://doi.org/10.1111/php.13032.
Abraham EH, Woo VH, Harlin-Jones C, Heselich A, Frohns F. Application and possible mechanisms of combining LLLT (low level laser therapy), infrared hyperthermia and ionizing radiation in the treatment of cancer. SPIE. 2014. https://doi.org/10.1117/12.2038630.
Comments (0)