Red wavelength-induced photobiomodulation enhances indocyanine green-based anticancer photodynamic therapy

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA Cancer J Clin. 2023. https://doi.org/10.3322/caac.21763.

Article  PubMed  Google Scholar 

Barsouk A, Padala SA, Vakiti A, Mohammed A, Saginala K, Thandra KC, Pawla P, Barsouk A. Epidemiology, staging and management of prostate cancer. Med Sci. 2020. https://doi.org/10.3390/medsci8030028.

Article  Google Scholar 

Bolla M, van Poppel H. Management of prostate cancer : a multidisciplinary approach. Cham: Springer; 2017.

Book  Google Scholar 

Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today. 2010. https://doi.org/10.1016/j.drudis.2010.08.006.

Article  PubMed  Google Scholar 

Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.13304.

Article  PubMed  PubMed Central  Google Scholar 

Bousbaa H. Novel anticancer strategies. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics13020275.

Article  PubMed  PubMed Central  Google Scholar 

Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003. https://doi.org/10.1038/nrc1071.

Article  PubMed  Google Scholar 

Niemz M. Laser-tissue interactions. Cham: Springer; 2007.

Book  Google Scholar 

Topaloglu N, Bakay E, Yünlü M, Onak G. Induced photo-cytotoxicity on prostate cancer cells with the photodynamic action of toluidine Blue ortho. Photodiagnosis Photodyn Ther. 2021. https://doi.org/10.1016/j.pdpdt.2021.102306.

Article  PubMed  Google Scholar 

Niculescu AG, Mihai GA. Photodynamic therapy—an up-to-date review. Appl Sci. 2021. https://doi.org/10.3390/app11083626.

Article  Google Scholar 

Hamblin MR, Mróz P. Advances in photodynamic therapy: basic, translational, and clinical. Boston: Artech House; 2008.

Google Scholar 

Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell death pathways in photodynamic therapy of cancer. Cancers. 2011. https://doi.org/10.3390/cancers3022516.

Article  PubMed  PubMed Central  Google Scholar 

Topaloglu N, Yuksel S, Gulsoy M. Influence of different output powers on the efficacy of photodynamic therapy with 809 nm diode laser and indocyanine green. Opt Interact with Tissue Cells XXIV. 2013. https://doi.org/10.1117/12.2004523.

Article  Google Scholar 

Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharm. 2021. https://doi.org/10.3390/pharmaceutics13091332.

Article  Google Scholar 

Wu J. The Enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J Pers Med. 2021. https://doi.org/10.3390/jpm11080771.

Article  PubMed  PubMed Central  Google Scholar 

Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of resistance to photodynamic therapy. Curr Med Chem. 2011. https://doi.org/10.2174/092986711795843272.

Article  PubMed  PubMed Central  Google Scholar 

Rapozzi V, Jori G. Resistance to photodynamic therapy in cancer. Cham: Springer; 2015.

Book  Google Scholar 

Shi X, Zhang CY, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases Wiley Interdiscip. Rev Nanomed Nanobiotechnol. 2019. https://doi.org/10.1002/wnan.1560.

Article  Google Scholar 

Xu J, Gao J, Wei Q. Combination of photodynamic therapy with radiotherapy for cancer treatment. J Nanomater. 2016. https://doi.org/10.1155/2016/8507924.

Article  Google Scholar 

Karami-Gadallo L, Ghoranneviss M, Ataie-Fashtami L, Pouladian M, Sardari D. Enhancement of cancerous cells treatment by applying cold atmospheric plasma and photo dynamic therapy simultaneously. Clin Plasma Med. 2016. https://doi.org/10.1016/j.cpme.2017.08.002.

Article  Google Scholar 

Noghreiyan AV, Imanparast A, Ara ES, Soudmand S, Noghreiyan VV, Sazgarnia A. In-vitro investigation of cold atmospheric plasma induced photodynamic effect by Indocyanine green and Protoporphyrin IX. Photodiagnosis Photodyn Ther. 2020. https://doi.org/10.1016/j.pdpdt.2020.101822.

Article  Google Scholar 

Wang M, Geilich BM, Keidar M, Webster TJ. Killing malignant melanoma cells with protoporphyrin IX-loaded polymersome-mediated photodynamic therapy and cold atmospheric plasma. Int J Nanomed. 2017. https://doi.org/10.2147/ijn.S129266.

Article  Google Scholar 

Ha J, Kim Y. Photodynamic and cold atmospheric plasma combination therapy using polymeric nanoparticles for the synergistic treatment of cervical cancer. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22031172.

Article  PubMed  PubMed Central  Google Scholar 

Dompe C, Moncrieff L, Matys J, Grezech-Leśniak K, Kocherova I, Bryja A, Bruska M, Dominiak M, Mozdziak P, Skiba THI, Shibli JA, Volponi AA, Kempisty B, Dyszkiewiez-Konwinska M. Photobiomodulation-underlying mechanism and clinical applications. J Clin Med. 2020. https://doi.org/10.3390/jcm9061724.

Article  PubMed  PubMed Central  Google Scholar 

Huang YY, Chen ACH, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009. https://doi.org/10.2203/dose-response.09-027.Hamblin.

Article  PubMed  PubMed Central  Google Scholar 

Tam SY, Tam VCW, Ramkumar S, Khaw ML, Law HKW, Lee SWY. Review on the cellular mechanisms of low-level laser therapy use in oncology. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.01255.

Article  PubMed  PubMed Central  Google Scholar 

De Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016. https://doi.org/10.1109/jstqe.2016.2561201.

Article  PubMed  PubMed Central  Google Scholar 

Lima PLV, Pereira CV, Nissanka N, Arguello T, Gavini G, Maranduba CMC, Diaz F, Moraes CT. Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase. J Photochem Photobiol B Biol. 2019. https://doi.org/10.1016/j.jphotobiol.2019.03.015.

Article  Google Scholar 

Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 2018. https://doi.org/10.1111/php.12864.

Article  PubMed  PubMed Central  Google Scholar 

Mason MG, Nicholls P, Wilson MT, Cooper CE. Nitric oxide inhibiton of respiration involves both competitive (heme) andn noncompetititve (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci. 2006. https://doi.org/10.1073/pnas.0506562103.

Article  PubMed  PubMed Central  Google Scholar 

Young SR, Dyson M, Bolton P. Effect of light on calcium uptake by macrophages. Laser Ther. 1990. https://doi.org/10.5978/islsm.90-OR-01.

Article  Google Scholar 

Wang L, Zhang D, Schwarz W. TRPV channels in mast cells as a target for low-level-laser therapy. Cells. 2014. https://doi.org/10.3390/cells3030662.

Article  PubMed  PubMed Central  Google Scholar 

Sommer AP, Zhu D, Scharnweber T. Laser modulated transmembrane convection: Implementation in cancer chemotherapy. J Control Release. 2010. https://doi.org/10.1016/j.jconrel.2010.10.010.

Article  PubMed  Google Scholar 

Amaroli A, Ferrando S, Benedicenti S. Photobiomodulation Affects key cellular pathways of all life-forms: considerations on old and new laser light targets and the calcium issue. Photochem Photobiol. 2019. https://doi.org/10.1111/php.13032.

Article  PubMed  Google Scholar 

Abraham EH, Woo VH, Harlin-Jones C, Heselich A, Frohns F. Application and possible mechanisms of combining LLLT (low level laser therapy), infrared hyperthermia and ionizing radiation in the treatment of cancer. SPIE. 2014. https://doi.org/10.1117/12.2038630.

Article 

Comments (0)

No login
gif