Lee H, Ross JS. The potential role of comprehensive genomic profiling to guide targeted therapy for patients with biliary cancer. Therap Adv Gastroenterol. 2017;10:507–20. https://doi.org/10.1177/1756283X17698090.
Article CAS PubMed PubMed Central Google Scholar
Kou T, Kanai M, Yamamoto Y, Kamada M, Nakatsui M, Sakuma T, et al. Clinical sequencing using a next-generation sequencing-based multiplex gene assay in patients with advanced solid tumors. Cancer Sci. 2017;108:1440–6. https://doi.org/10.1111/cas.13265.
Article CAS PubMed PubMed Central Google Scholar
Weinstein IB, Case K. The history of cancer research: introducing an AACR centennial series. Cancer Res. 2008;68:6861–2. https://doi.org/10.1158/0008-5472.CAN-08-2827.
Article CAS PubMed Google Scholar
Geoffery MC. The cell. 2nd ed. Sunderland: Sinauer Associates Inc; 2000.
Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11:685–96. https://doi.org/10.1038/nrg2841.
Article CAS PubMed Google Scholar
Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y, Kahles A, et al. Genomic basis for RNA alterations in cancer. Nature. 2020;578:129–36. https://doi.org/10.1038/s41586-020-1970-0.
Article CAS PubMed PubMed Central Google Scholar
Comprehensive Genomic Profiling (CGP): Cancer genomic profiling benefits. Illumina n.d. https://www.illumina.com/areas-of-interest/cancer/clinical-cancer-research/cgp.html. Accessed 9 July 2021. Accessed 7 Sept 2021.
Luo W, Tian P, Wang Y, Xu H, Chen L, Tang C, et al. Characteristics of genomic alterations of lung adenocarcinoma in young never-smokers. Int J Cancer. 2018;143:1696–705. https://doi.org/10.1002/ijc.31542.
Article CAS PubMed PubMed Central Google Scholar
Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med. 2020;12:1–19. https://doi.org/10.1186/s13073-019-0703-1.
Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M, et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 2018;06:79–100. https://doi.org/10.1142/S2339547818300020.
Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat Rev. 2020;86: 102019. https://doi.org/10.1016/j.ctrv.2020.102019.
Article CAS PubMed PubMed Central Google Scholar
Pal M, Muinao T, Boruah HPD, Mahindroo N. Current advances in prognostic and diagnostic biomarkers for solid cancers: detection techniques and future challenges. Biomed Pharmacother. 2022;146: 112488. https://doi.org/10.1016/j.biopha.2021.112488.
Article CAS PubMed Google Scholar
Mateo J, Steuten L, Aftimos P, André F, Davies M, Garralda E, et al. Delivering precision oncology to patients with cancer. Nat Med. 2022;28:658–65. https://doi.org/10.1038/s41591-022-01717-2.
Article CAS PubMed Google Scholar
Rapoport BL, Troncone G, Schmitt F, Nayler SJ. Comprehensive genomic profiling. Oxford: S. Karger Publishers Ltd; 2020.
Simon R, Roychowdhury S. Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov. 2013;12:358–69. https://doi.org/10.1038/nrd3979.
Article CAS PubMed Google Scholar
Treatment. Canadian Cancer Society 2021. www.cancer.ca. https://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/treatment/?region=on. Accessed 8 Sept 2021.
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther. 2016;38:1551–66. https://doi.org/10.1016/j.clinthera.2016.03.026.
Looney A-M, Nawaz K, Webster RM. Tumour-agnostic therapies. Nat Rev Drug Discov. 2020;19:383–4. https://doi.org/10.1038/d41573-020-00015-1.
Article CAS PubMed Google Scholar
Haslam A, Olivier T, Tuia J, Prasad V. Umbrella review of basket trials testing a drug in tumors with actionable genetic biomarkers. BMC Cancer. 2023;23:46. https://doi.org/10.1186/s12885-022-10421-w.
Article CAS PubMed PubMed Central Google Scholar
Lodish H, Berk A, Zipursky S. Proto-oncogenes and tumor-suppressor genes. Molecular cell biology. 4th ed. New York: W. H. Freeman; 2000.
Jones AS. Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer. Outcome Predict Cancer. 2007. https://doi.org/10.1016/B978-044452855-1/50007-6.
Raphael BJ, Dobson JR, Oesper L, Vandin F. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med. 2014;6:1–17. https://doi.org/10.1186/gm524.
Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142:321–46. https://doi.org/10.5858/arpa.2017-0388-CP.
Article CAS PubMed Google Scholar
Toufektchan E, Toledo F. The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers. 2018;10:135. https://doi.org/10.3390/cancers10050135.
Article CAS PubMed PubMed Central Google Scholar
Cadwell C, Zambetti GP. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene. 2001;277:15–30. https://doi.org/10.1016/S0378-1119(01)00696-5.
Article CAS PubMed Google Scholar
Perri F, Pisconti S, della Vittoria Scarpati G. P53 mutations and cancer: a tight linkage. Ann Transl Med 2016. https://doi.org/10.21037/atm.2016.12.40.
Zhu G, Pan C, Bei J-X, Li B, Liang C, Xu Y, et al. Mutant p53 in cancer progression and targeted therapies. Front Oncol. 2020;10: 595187. https://doi.org/10.3389/fonc.2020.595187.
Article PubMed PubMed Central Google Scholar
Schneider K, Zelly K, Nichols KE, Garber J. Li-Fraumeni Syndrome . In: Adam M, Ardinger H, Pagon R, editors. GeneReviews, Seattle: University of Washington; 2019.
Correa H. Li-fraumeni syndrome. J Pediatr Genet. 2016. https://doi.org/10.1055/s-0036-1579759.
Article PubMed PubMed Central Google Scholar
Liang X, Vacher S, Boulai A, Bernard V, Baulande S, Bohec M, et al. Targeted next-generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer. Breast Cancer Res. 2018;20:1–12. https://doi.org/10.1186/s13058-018-1007-x.
Leading Diagnostics Companies Join Forces to Establish Access to Comprehensive Genomic Profiling Coalition. Laboratory Corporation of America Holdings n.d. https://ir.labcorp.com/news-releases/news-release-details/leading-diagnostics-companies-join-forces-establish-access. Accessed 7 Sept 2021.
Loscalzo J, Handy DE. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference Series). Pulm Circ. 2014;4:169–74. https://doi.org/10.1086/675979.
Article CAS PubMed PubMed Central Google Scholar
Kamińska K, Nalejska E, Kubiak M, Wojtysiak J, Żołna Ł, Kowalewski J, et al. Prognostic and predictive epigenetic biomarkers in oncology. Mol Diagn Ther. 2019;23:83–95. https://doi.org/10.1007/s40291-018-0371-7.
Article CAS PubMed Google Scholar
TruSight Oncology 500 Assay For Pan-Cancer Biomerkers in DNA and RNA . Illumina n.d. https://www.illumina.com/products/by-type/clinical-research-products/trusight-oncology-500.html. Accessed 7 Sept 2021.
Non-Small Cell Lung Cancer Targeted Drug Therapy. American Cancer Society n.d. https://www.cancer.org/cancer/lung-cancer/treating-non-small-cell/targeted-therapies.html#references. Accessed 7 Sept 2021.
Non-Small Cell Lung Cancer Treatment. NCCN Clinical Practice Guidelines in Oncology 2021. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1450. Accessed 7 Sept 2021.
Fransson Å, Glaessgen D, Alfredsson J, Wiman KG, Bajalica-Lagercrantz S, Mohell N. Strong synergy with APR-246 and DNA-damaging drugs in primary cancer cells from patients with TP53 mutant High-Grade Serous ovarian cancer. J Ovarian Res. 2016;9:1–10. https://doi.org/10.1186/s13048-016-0239-6.
Synnott NC, O’Connell D, Crown J, Duffy MJ. COTI-2 reactivates mutant p53 and inhibits growth of triple-negative breast cancer cells. Breast Cancer Res Treat. 2020;179:47–56. https://doi.org/10.1007/s10549-019-05435-1.
Article CAS PubMed Google Scholar
Pestinger V, Smith M, Sillo T, Findlay JM, Laes J-F, Martin G, et al. Use of an integrated pan-cancer oncology enrichment next-generation sequencing assay to measure tumour mutational burden and detect clinically actionable variants. Mol Diagn Ther. 2020;24:339–49. https://doi.org/10.1007/s40291-020-00462-x.
Article CAS PubMed PubMed Central Google Scholar
Liu L, Garbutt C, Golkaram M, Kaplan S, Martins M, Casino S, et al. Microsatellite instability testing and lynch syndrome screening for colorectal cancer patients through tumour sequencing. Ann Oncol. 2019;30: v574. https://doi.org/10.1093/annonc/mdz257.001.
Cuppens K, Froyen G, Cruys B, Geerdens E, Achten R, Vanbockrijck M, et al. P2.04-76 tumor mutational burden by TSO500 next generation sequencing panel and clinical outcome in non-small cell lung cancer. J Thorac Oncol. 2019;14:S738-9. https://doi.org/10.1016/j.jtho.2019.08.1581.
Comments (0)