Chalker JM, Davis BG (2010) Chemical mutagenesis: selective post-expression interconversion of protein amino acid residues. Curr Opin Chem Biol 14(6):781–789. https://doi.org/10.1016/j.cbpa.2010.10.007
Article CAS PubMed Google Scholar
Chen BX, Wei T, Xue LN, Zheng QW, Ye ZW, Zou Y, Yang Y, Yun F, Guo LQ, Lin JF (2020) Transcriptome analysis reveals the flexibility of cordycepin network in Cordyceps militaris activated by L-alanine addition. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.00577
Duan XY, Yang H, Wang C, Liu HH, Lu XY, Tian Y (2023) Microbial synthesis of cordycepin, current systems and future perspectives. Trends Food Sci Tech 132:162–170. https://doi.org/10.1016/j.tifs.2023.01.006
Elkin SR, Kumar A, Price CW, Columbus L (2013) A broad specificity nucleoside kinase from Thermoplasma acidophilum. Proteins 81(4):568–582. https://doi.org/10.1002/prot.24212
Article CAS PubMed PubMed Central Google Scholar
Fan DD, Wang W, Zhong JJ (2012) Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochem Eng J 60:30–35. https://doi.org/10.1016/j.bej.2011.09.014
Fan XN, Zhou XQ, Chen H, Tang M, Xie XN (2021) Cross-talks between macro- and micronutrient uptake and signaling in plants. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.663477
Hu T, Liu LP, Chen SZ, Wu WL, Xiang CG, Guo YB (2018) Determination of selenium species in Cordyceps militaris by high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry. Anal Lett 51(14):2316–2330. https://doi.org/10.1080/00032719.2017.1414827
Hu T, Liang Y, Zhao GS, Wu WL, Li HF, Guo YB (2019) Selenium biofortification and antioxidant activity in Cordyceps militaris supplied with selenate, selenite, or selenomethionine. Biol Trace Elem Res 187(2):553–561. https://doi.org/10.1007/s12011-018-1386-y
Article CAS PubMed Google Scholar
Kang C, Wen TC, Kang JC, Meng ZB, Li GR, Hyde KD (2014) Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture. Sci World J 2014:1–15. https://doi.org/10.1155/2014/510627
Kitajima T, Chiba Y (2013) Selenomethionine metabolism and its toxicity in yeast. Biomol Concepts 4(6):611–616. https://doi.org/10.1515/bmc-2013-0033
Article CAS PubMed Google Scholar
Kontogiannatos D, Koutrotsios G, Xekalaki S, Zervakis GI (2021) Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris—a review of various aspects and recent trends towards the exploitation of a valuable fungus. J Fungi 7(11):986. https://doi.org/10.3390/jof7110986
Kunhorm P, Chaicharoenaudomrung N, Noisa P (2019) Enrichment of cordycepin for cosmeceutical applications: culture systems and strategies. Appl Microbiol Biot 103(4):1681–1691. https://doi.org/10.1007/s00253-019-09623-3
Lohkamp B, McDermott G, Campbell SA, Coggins JR, Lapthorn AJ (2004) The structure of Escherichia coli ATP-phosphoribosyltransferase: identification of substrate binding sites and mode of AMP inhibition. J Mol Biol 336(1):131–144. https://doi.org/10.1016/j.jmb.2003.12.020
Article CAS PubMed Google Scholar
Lou HW, Lin JF, Guo LQ, Wang XW, Tian SQ, Liu CX, Zhao Y, Zhao RY (2019) Advances in research on Cordyceps militaris degeneration. Appl Microbiol Biot 103(19):7835–7841. https://doi.org/10.1007/s00253-019-10074-z
Ma YC, Huang P, Wang XL, Liu GQ (2023) Multi-omics analysis unravels positive effect of rotenone on the cordycepin biosynthesis in submerged fermentation of Cordyceps militaris. Bioresource Technol 373:128705. https://doi.org/10.1016/j.biortech.2023.128705
Mao XB, Zhong JJ (2006) Significant effect of NH4+ on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Enzyme Microb Tech 38(3):343-350. https://doi.org/10.1016/j.enzmictec.2004.10.010
Mao XB, Eksriwong T, Chauvatcharin S, Zhong JJ (2005) Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem 40(5):1667–1672. https://doi.org/10.1016/j.procbio.2004.06.046
Mapelli V, Hillestrøm PR, Patil K, Larsen EH, Olsson L (2011) The interplay between sulphur and selenium metabolism influences the intracellular redox balance in Saccharomyces cerevisiae. FEMS Yeast Res 12(1):20–32. https://doi.org/10.1111/j.1567-1364.2011.00757.x
Article CAS PubMed Google Scholar
Maseko T, Howell K, Dunshea FR, Ng K (2014) Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem 146:327–333. https://doi.org/10.1016/j.foodchem.2013.09.074
Article CAS PubMed Google Scholar
Masuda M, Urabe E, Honda H, Sakurai A, Sakakibara M (2007) Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme Microb Tech 40(5):1199–1205. https://doi.org/10.1016/j.enzmictec.2006.09.008
Murphy MP, Chouchani ET (2022) Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat Chem Biol 18(5):461–469. https://doi.org/10.1038/s41589-022-01004-8
Article CAS PubMed PubMed Central Google Scholar
Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, Loo JA, Merchant SS (2012) Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. Plant Cell 24(6):2649–2665. https://doi.org/10.1105/tpc.112.098962
Article CAS PubMed PubMed Central Google Scholar
Pisco JP, de Chiara C, Pacholarz KJ, Garza-Garcia A, Ogrodowicz RW, Walker PA, Barran PE, Smerdon SJ, de Carvalho LPS (2017) Uncoupling conformational states from activity in an allosteric enzyme. Nat Commun 8(1). https://doi.org/10.1038/s41467-017-00224-0
Qin P, Li XK, Yang H, Wang ZY, Lu DX (2019) Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules 24(12):2231. https://doi.org/10.3390/molecules24122231
Article CAS PubMed PubMed Central Google Scholar
Rabinowitz JD, Enerbäck S (2020) Lactate: the ugly duckling of energy metabolism. Nat Metab 2(7):566–571. https://doi.org/10.1038/s42255-020-0243-4
Article CAS PubMed PubMed Central Google Scholar
Raethong N, Wang H, Nielsen J, Vongsangnak W (2020) Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media. Comput Struct Biotec 18:1–8. https://doi.org/10.1016/j.csbj.2019.11.003
Raethong N, Laoteng K, Vongsangnak W (2018) Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-27534-7
Shakoury-Elizeh M, Tiedeman J, Rashford J, Ferea T, Demeter J, Garcia E, Rolfes R, Brown PO, Botstein D, Philpott CC (2004) Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. Mol Biol Cell 15(3):1233–1243. https://doi.org/10.1091/mbc.e03-09-0642
Article CAS PubMed PubMed Central Google Scholar
Shih IL, Tsai KL, Hsieh C (2007) Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem Eng J 33(3):193–201. https://doi.org/10.1016/j.bej.2006.10.019
Shu C, Jiang ZM, Biczysko M (2020) Toward accurate prediction of amino acid derivatives structure and energetics from DFT: glycine conformers and their interconversions. J Mol Model 26(6). https://doi.org/10.1007/s00894-020-4342-7
Tang JP, Qian ZQ, Wu H (2018) Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source. Bioresource Technol 268:60–67. https://doi.org/10.1016/j.biortech.2018.07.128
Tuli HS, Sharma AK, Sandhu SS, Kashyap D (2013) Cordycepin: A bioactive metabolite with therapeutic potential. Life Sci 93(23):863–869. https://doi.org/10.1016/j.lfs.2013.09.030
Article CAS PubMed Google Scholar
Vacchina V, Foix D, Menta M, Martinez H, Séby F (2021) Optimization of elemental selenium (Se(0)) determination in yeasts by anion-exchange HPLC-ICP-MS. Anal Bioanal Chem 413(7):1809–1816. https://doi.org/10.1007/s00216-020-03129-y
Article CAS PubMed Google Scholar
Vanaja K, Shobha Rani RH (2007) Design of experiments: concept and applications of Plackett Burman design. Clin Res Regul Aff 24(1):1–23. https://doi.org/10.1080/10601330701220520
Vongsangnak W, Raethong N, Mujchariyakul W, Nguyen NN, Leong HW, Laoteng K (2017) Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi. Gene 626:132–139. https://doi.org/10.1016/j.gene.2017.05.027
Article CAS PubMed Google Scholar
Wang L, Yan HH, Zeng B, Hu ZH (2022) Research progress on cordycepin synthesis and methods for enhancement of cordycepin production in Cordyceps militaris. Bioengineering 9(2):69. https://doi.org/10.3390/bioengineering9020069
Article CAS PubMed PubMed Central Google Scholar
Wāng Y, Wang R, Wáng Y, Li Y, Yang RH, Gong M, Shang JJ, Zhang JS, Mao WJ, Zou G, Bao DP (2020) Diverse function and regulation of CmSnf1 in entomopathogenic fungus Cordyceps militaris. Fungal Genet Biol 142:103415. https://doi.org/10.1016/j.fgb.2020.103415
Article CAS PubMed Google Scholar
Wongsa B, Raethong N, Chumnanpuen P, Wong-ekkabut J, Laoteng K, Vongsangnak W (2020) Alternative metabolic routes in channeling xylose to cordycepin production of Cordyceps militaris identified by comparative transcriptome analysis. Genomics 112(1):629–636. https://doi.org/10.1016/j.ygeno.2019.04.015
Comments (0)