Allen K, Cohen D, Culver A, Cummins A, Curtis S, Eriksen M, Gordon M, Howe A, Jackson S, Lapis N (2018) Better alternatives now BAN LIST 2.0. The Circulate Initiative. https://www.thecirculateinitiative.org/projects/Better-Alternatives-Now-B.A.N.-List-2.0. Accessed 24 Nov 2022
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423. https://doi.org/10.1038/s41587-019-0036-z
Article CAS PubMed Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Article CAS PubMed Google Scholar
Bagheri AR, Laforsch C, Greiner A, Agarwal S (2017) Fate of so-called biodegradable polymers in seawater and freshwater. Global Chall 1:1700048. https://doi.org/10.1002/gch2.201700048
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021
Article CAS PubMed PubMed Central Google Scholar
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Article CAS PubMed PubMed Central Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
Article CAS PubMed Google Scholar
Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635
Chateau M, Rousselle J-P (2020) Masterbatch composition comprising a high concentration of biological entities (U.S. Patent No. 10,723,848). U.S. Patent and Trademark Office. https://patents.google.com/patent/US10723848B2/en
Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Article CAS PubMed PubMed Central Google Scholar
Dauvergne P (2018) Why is the global governance of plastic failing the oceans? Glob Environ Chang 51:22–31. https://doi.org/10.1016/j.gloenvcha.2018.05.002
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF (2020) RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci 117:9451–9457. https://doi.org/10.1073/pnas.1921046117
Article CAS PubMed PubMed Central Google Scholar
Greene J, California. Department of Resources Recycling and Recovery, CSU CRF (2012) Report topic: PLA and PHA biodegradation in the marine environment: contractor’s report. Dept Resour Recycl Recover. https://www2.calrecycle.ca.gov/Publications/Details/1435. Accessed 24 Nov 2022
Guemard E, Dalibey M (2022) Liquid composition comprising biological entities and uses thereof (U.S. Patent No. 11,384,218). U.S. Patent and Trademark Office. https://patents.google.com/patent/US11384218B2/en
Guemard E, Chateau M, Marty A (2021) Process for preparing a biodegradable plastic composition (U.S. Patent No. 11,198,767). U.S. Patent and Trademark Office. https://patents.google.com/patent/US11198767B2/en
Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086
Article CAS PubMed PubMed Central Google Scholar
Haider TP, Völker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed 58:50–62. https://doi.org/10.1002/anie.201805766
Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus. Wiley
Hoshino A, Isono Y (2002) Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes sp. Biodegradation 13:141–147. https://doi.org/10.1023/a:1020450326301
Article CAS PubMed Google Scholar
Hu X, Gao Z, Wang Z, Su T, Yang L, Li P (2016) Enzymatic degradation of poly(butylene succinate) by cutinase cloned from Fusarium solani. Polym Degrad Stab 134:211–219. https://doi.org/10.1016/j.polymdegradstab.2016.10.012
Huang Q, Hiyama M, Kabe T, Kimura S, Iwata T (2020) Enzymatic self-biodegradation of poly(l-lactic acid) films by embedded heat-treated and immobilized proteinase K. Biomacromol 21:3301–3307. https://doi.org/10.1021/acs.biomac.0c00759
Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. https://doi.org/10.1126/science.1260352
Article CAS PubMed Google Scholar
Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Comprehensive Rev Food Sci Food Saf 9:552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x
Kawai F, Nakadai K, Nishioka E, Nakajima H, Ohara H, Masaki K, Iefuji H (2011) Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(l-lactic acid) and poly(d-lactic acid). Polym Degrad Stab 96:1342–1348. https://doi.org/10.1016/j.polymdegradstab.2011.03.022
Kodama Y, Masaki K, Kondo H, Suzuki M, Tsuda S, Nagura T, Shimba N, Suzuki E, Iefuji H (2009) Crystal structure and enhanced activity of a cutinase-like enzyme from Cryptococcus sp. strain S-2. Proteins: structure, function, and bioinformatics 77:710–717. https://doi.org/10.1002/prot.22484
Koitabashi M, Noguchi MT, Sameshima-Yamashita Y, Hiradate S, Suzuki K, Yoshida S, Watanabe T, Shinozaki Y, Tsushima S, Kitamoto HK (2012) Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. AMB Express 2:40. https://doi.org/10.1186/2191-0855-2-40
Article CAS PubMed PubMed Central Google Scholar
Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152. https://doi.org/10.1016/S0141-3910(97)00148-1
Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 71:7548–7550. https://doi.org/10.1128/AEM.71.11.7548-7550.2005
Article CAS PubMed PubMed Central Google Scholar
Oda Y, Yonetsu A, Urakami T, Tonomura K (2000) Degradation of polylactide by commercial proteases. J Polym Environ 8:29–32. https://doi.org/10.1023/A:1010120128048
Prema S, Palempalli UMD (2015) Degradation of polylactide plastic by PLA depolymerase isolated from Thermophilic Bacillus. Int J Curr Microbiol App Sci 4:645–654
Rudnik E, Briassoulis D (2011) Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind Crops Prod 33:648–658. https://doi.org/10.1016/j.indcrop.2010.12.031
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. https://doi.org/10.1093/bioinformatics/btv351
Article CAS PubMed Google Scholar
Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467. https://doi.org/10.1093/nar/gki458
Article CAS PubMed PubMed Central Google Scholar
Sulaiman S, Yamato S, Kanaya E, Kim J-J, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78:1556–1562. https://doi.org/10.1128/AEM.06725-11
Article CAS PubMed PubMed Central Google Scholar
Suzuki K, Sakamoto H, Shinozaki Y, Tabata J, Watanabe T, Mochizuki A, Koitabashi M, Fujii T, Tsushima S, Kitamoto HK (2013) Affinity purification and characterization of a biodegradable plastic-degrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis. Appl Microbiol Biotechnol 97:7679–7688. https://doi.org/10.1007/s00253-012-4595-x
Article CAS PubMed Google Scholar
Wang G-X, Huang D, Ji J-H, Völker C, Wurm FR (2021) Seawater-degradable polymers—fighting the marine plastic pollution. Adv Sci 8:2001121. https://doi.org/10.1002/advs.202001121
Watanabe T, Suzuki K, Shinozaki Y, Yarimizu T, Yoshida S, Sameshima-Yamashita Y, Koitabashi M, Kitamoto HK (2015) A UV-induced mutant of Cryptococcus flavus GB-1 with increased production of a biodegradable plastic-degrading enzyme. Process Biochem 50:1718–1724. https://doi.org/10.1016/j.procbio.2015.07.005
Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32:918–926. https://doi.org/10.1016/j.polymertesting.2013.05.001
Comments (0)