The catalytic mechanism of direction-dependent interactions for 2,3-dihydroxybenzoate decarboxylase

Aleku GA, Roberts GW, Titchiner GR, Leys D (2021) Synthetic enzyme-catalyzed CO2 fixation reactions. Chemsuschem 14:1781–1804. https://doi.org/10.1002/cssc.202100159

Article  CAS  PubMed  PubMed Central  Google Scholar 

Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJ (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658. https://doi.org/10.1021/cr300463y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma MT, Pozueta-Romero J (2012) Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. PNAS 109:321–326. https://doi.org/10.1073/pnas.1117099109

Article  PubMed  Google Scholar 

Cannon WR, Singleton SF, Benkovic SJ (1996) A perspective on biological catalysis. Nat Struct Mol Biol 3:821–833. https://doi.org/10.1038/nsb1096-821

Article  CAS  Google Scholar 

Fan Y, Feng J, Yang M, Tan X, Fan H, Guo M, Wang B, Xue S (2021) CO2 (aq) concentration–dependent CO2 fixation via carboxylation by decarboxylase. Green Chem 23:4403–4409. https://doi.org/10.1039/d1gc00825k

Article  CAS  Google Scholar 

Gao X, Wu M, Zhang W, Li C, Guo RT, Dai Y, Liu W, Mao S, Lu F, Qin HM (2021) Structural basis of salicylic acid decarboxylase reveals a unique substrate recognition mode and access channel. J Agric Food Chem 69:11616–11625. https://doi.org/10.1021/acs.jafc.1c04091

Article  CAS  PubMed  Google Scholar 

Goto M, Hayashi H, Miyahara I, Hirotsu K, Yoshida M, Oikawa T (2006) Crystal structures of nonoxidative zinc-dependent 2,6-dihydroxybenzoate (γ-resorcylate) decarboxylase from Rhizobium sp. strain MTP-10005. J Biol Chem 281:34365–34373. https://doi.org/10.1074/jbc.m607270200

Article  CAS  PubMed  Google Scholar 

Ienaga S, Kosaka S, Honda Y, Ishii Y, Kirimura K (2013) p-Aminosalicylic acid production by enzymatic Kolbe-Schmitt reaction using salicylic acid decarboxylases improved through site-directed mutagenesis. Bull Chem Soc Jpn 86:628–634. https://doi.org/10.1246/bcsj.20130006

Article  CAS  Google Scholar 

Kirimura K, Gunji H, Wakayama R, Hattori T, Ishii Y (2010) Enzymatic Kolbe-Schmitt reaction to form salicylic acid from phenol: enzymatic characterization and gene identification of a novel enzyme, Trichosporon moniliiforme salicylic acid decarboxylase. Biochem Biophys Res Commun 394:279–284. https://doi.org/10.1016/j.bbrc.2010.02.154

Article  CAS  PubMed  Google Scholar 

Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J (2019) Engineering enzyme access tunnels. Biotechnolo Adv 37:107386. https://doi.org/10.1016/j.biotechadv.2019.04.008

Article  CAS  Google Scholar 

Kourist R, Guterl JK, Miyamoto K, Sieber V (2014) Enzymatic decarboxylation-an emerging reaction for chemicals production from renewable resources. ChemCatChem 6:689–701. https://doi.org/10.1002/cctc.201300881

Article  CAS  Google Scholar 

Li T, Huo L, Pulley C, Liu A (2012) Decarboxylation mechanisms in biological system. Bioorg Chem 43:2–14. https://doi.org/10.1016/j.bioorg.2012.03.001

Article  CAS  PubMed  Google Scholar 

Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mobley DL, Dill KA (2009) Binding of small-molecule ligands to proteins:“what you see” is not always “what you get.” Structure 17:489–498. https://doi.org/10.1016/j.str.2009.02.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Müller M, Sprenger GA, Pohl M (2013) C-C bond formation using ThDP-dependent lyases. Curr Opin Chem Biol 17:261–270. https://doi.org/10.1016/j.cbpa.2013.02.017

Article  CAS  PubMed  Google Scholar 

Payne KA, Marshall SA, Fisher K, Cliff MJ, Cannas DM, Yan C, Heyes DJ, Parker DA, Larrosa I, Leys D (2019) Enzymatic carboxylation of 2-furoic acid yields 2,5-furandicarboxylic acid (FDCA). ACS Catal 9:2854–2865. https://doi.org/10.1021/acscatal.8b04862

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plasch K, Hofer G, Keller W, Hay S, Heyes DJ, Dennig A, Glueck SM, Faber K (2018) Pressurized CO2 as a carboxylating agent for the biocatalytic ortho-carboxylation of resorcinol. Green Chem 20:1754–1759. https://doi.org/10.1039/c8gc00008e

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saleh T, Kalodimos CG (2017) Enzymes at work are enzymes in motion. Science 355:247–248. https://doi.org/10.1126/science.aal4632

Article  CAS  PubMed  Google Scholar 

Schmidt NG, Eger E, Kroutil W (2016) Building bridges: biocatalytic C-C-bond formation toward multifunctional products. ACS Catal 6:4286–4311. https://doi.org/10.1021/acscatal.6b00758

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheng X, Himo F (2021) Mechanisms of metal-dependent non-redox decarboxylases from quantum chemical calculations. Comput Struct Biotechnol J 19:3176–3186. https://doi.org/10.1016/j.csbj.2021.05.044

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheng X, Patskovsky Y, Vladimirova A, Bonanno JB, Almo SC, Himo F, Raushel FM (2017) Mechanism and structure of γ-resorcylate decarboxylase. Biochemistry 57:3167–3175. https://doi.org/10.1021/acs.biochem.7b01213

Article  CAS  Google Scholar 

Song M, Zhang X, Liu W, Feng J, Cui Y, Yao P, Wang M, Guo RT, Wu Q, Zhu D (2020) 2,3-Dihydroxybenzoic acid decarboxylase from Fusarium oxysporum: crystal structures and substrate recognition mechanism. ChemBioChem 21:2950–2956. https://doi.org/10.1002/cbic.202000244

Article  CAS  PubMed  Google Scholar 

Su KH, Wu CT, Lin SW, Mori S, Liu WM, Yang HC (2021) Calculation of CYP450 protein–ligand binding and dissociation free energy paths. J Chem Phys 155:025101. https://doi.org/10.1063/5.0046169

Article  CAS  PubMed  Google Scholar 

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

Article  CAS  PubMed  Google Scholar 

Wuensch C, Gross J, Steinkellner G, Lyskowski A, Gruber K, Glueck SM, Faber K (2014) Regioselective ortho-carboxylation of phenols catalyzed by benzoic acid decarboxylases: a biocatalytic equivalent to the Kolbe-Schmitt reaction. RSC Adv 4:9673–9679. https://doi.org/10.1039/c3ra47719c

Article  CAS  Google Scholar 

Zhang X, Ren J, Yao P, Gong R, Wang M, Wu Q, Zhu D (2018) Biochemical characterization and substrate profiling of a reversible 2,3-dihydroxybenzoic acid decarboxylase for biocatalytic Kolbe-Schmitt reaction. Enzyme Microb Technol 113:37–43. https://doi.org/10.1016/j.enzmictec.2018.02.008

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif