Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, Laversanne M, McGlynn KA, Soerjomataram I. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022;77(6):1598–606. https://doi.org/10.1016/j.jhep.2022.08.021.
Article PubMed PubMed Central Google Scholar
Draper A. A concise review of the changing landscape of hepatocellular carcinoma. Am J Manag Care. 2020;26(10 Suppl):S211-s219. https://doi.org/10.37765/ajmc.2020.88512.
Wu K, Lin F. Lipid metabolism as a potential target of liver cancer. J Hepatocell Carcinoma. 2024;11:327–46. https://doi.org/10.2147/jhc.S450423.
Article CAS PubMed PubMed Central Google Scholar
Corn KC, Windham MA, Rafat M. Lipids in the tumor microenvironment: from cancer progression to treatment. Prog Lipid Res. 2020;80: 101055. https://doi.org/10.1016/j.plipres.2020.101055.
Article CAS PubMed PubMed Central Google Scholar
Alannan M, Fayyad-Kazan H, Trézéguet V, Merched A. Targeting Lipid Metabolism in Liver Cancer. Biochemistry. 2020;59(41):3951–64. https://doi.org/10.1021/acs.biochem.0c00477.
Article CAS PubMed Google Scholar
Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31(1):62–76. https://doi.org/10.1016/j.cmet.2019.11.010.
Article CAS PubMed Google Scholar
Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22. https://doi.org/10.1038/s41416-019-0650-z.
Article CAS PubMed Google Scholar
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res. 2023;46(11–12):855–81. https://doi.org/10.1007/s12272-023-01473-y.
Article CAS PubMed PubMed Central Google Scholar
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, Yang JL. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol. 2023;16(1): 103. https://doi.org/10.1186/s13045-023-01498-2.
Article CAS PubMed PubMed Central Google Scholar
Wang T, Zhang X, Shan K, Luo Y, Yu T, Liu Z, Zhai J, Li S, Yin J, Han N. Various crystalline forms of realgar exhibit differentiated anti-abscess and anticancer effects based on a PXRD analysis and biological evaluation. J Ethnopharmacol. 2025;338(Pt3): 119122. https://doi.org/10.1016/j.jep.2024.119122.
Article CAS PubMed Google Scholar
Qian X, Wang Y, Liu Z, Fang F, Ma Y, Zhou L, Pan Y, Meng X, Yan B, Zhu X, Wang X, Zhao J, Liu S. Establishment of XRD fourier fingerprint identification method of realgar decoction pieces and its anti-tumor activity in tumor-in-situ transplanted mice. J Ethnopharmacol. 2024;331: 118303. https://doi.org/10.1016/j.jep.2024.118303.
Article CAS PubMed Google Scholar
Kim SY, Park C, Kim MY, Ji SY, Hwangbo H, Lee H, Hong SH, Han MH, Jeong JW, Kim GY, Son CG, Cheong J, Choi YH. ROS-mediated anti-tumor effect of Coptidis Rhizoma against human hepatocellular carcinoma Hep3B cells and xenografts. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22094797.
Article PubMed PubMed Central Google Scholar
Dong S, Xu P, Yang P, Jiao J, Cheng DC, Chen DL. “Huanglianjiedu Decoction” against pancreatic adenocarcinoma proliferation of by downregulating the PI3K/AKT/mTOR and MAPK/ERK1/2 signaling pathways. J Evid Based Integr Med. 2024. https://doi.org/10.1177/2515690x241291381.
Xiaoxia X, Jing S, Dongbin X, Yonggang T, Jingke Z, Yanying Z, Hulai W. Realgar nanoparticles inhibit migration, invasion and metastasis in a mouse model of breast cancer by suppressing matrix metalloproteinases and angiogenesis. Curr Drug Deliv. 2020;17(2):148–58. https://doi.org/10.2174/1567201817666200115105633.
Article CAS PubMed Google Scholar
Li M, Shang H, Wang T, Yang SQ, Li L. Huanglian decoction suppresses the growth of hepatocellular carcinoma cells by reducing CCNB1 expression. World J Gastroenterol. 2021;27(10):939–58. https://doi.org/10.3748/wjg.v27.i10.939.
Article CAS PubMed PubMed Central Google Scholar
Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev. 2022;41(1):17–31. https://doi.org/10.1007/s10555-021-09996-w.
Article CAS PubMed Google Scholar
Raskov H, Gaggar S, Tajik A, Orhan A, Gögenur I. Metabolic switch in cancer - survival of the fittest. Eur J Cancer. 2023;180:30–51. https://doi.org/10.1016/j.ejca.2022.11.025.
Article CAS PubMed Google Scholar
Cui MY, Yi X, Zhu DX, Wu J. The role of lipid metabolism in gastric cancer. Front Oncol. 2022;12: 916661. https://doi.org/10.3389/fonc.2022.916661.
Article CAS PubMed PubMed Central Google Scholar
Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid metabolism and cancer. Life (Basel). 2022. https://doi.org/10.3390/life12060784.
Article PubMed PubMed Central Google Scholar
Li B, Mi J, Yuan Q. Fatty acid metabolism-related enzymes in colorectal cancer metastasis: from biological function to molecular mechanism. Cell Death Discov. 2024;10(1): 350. https://doi.org/10.1038/s41420-024-02126-9.
Article CAS PubMed PubMed Central Google Scholar
Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H, Xiong J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022;12(2):558–80. https://doi.org/10.1016/j.apsb.2021.09.019.
Article CAS PubMed Google Scholar
Zuo Q, Wu Y, Hu Y, Shao C, Liang Y, Chen L, Guo Q, Huang P, Chen Q. Targeting lipid reprogramming in the tumor microenvironment by traditional Chinese medicines as a potential cancer treatment. Heliyon. 2024;10(9): e30807. https://doi.org/10.1016/j.heliyon.2024.e30807.
Article CAS PubMed PubMed Central Google Scholar
Cheng Y, He J, Zuo B, He Y. Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol. 2024;15(1): 206. https://doi.org/10.1007/s12672-024-01069-y.
Article CAS PubMed PubMed Central Google Scholar
Gagneja S, Capalash N, Sharma P. Hyaluronic acid as a tumor progression agent and a potential chemotherapeutic biomolecule against cancer: a review on its dual role. Int J Biol Macromol. 2024;275(Pt2): 133744. https://doi.org/10.1016/j.ijbiomac.2024.133744.
Article CAS PubMed Google Scholar
Lee JH, Sánchez-Rivera FJ, He L, Basnet H, Chen FX, Spina E, Li L, Torner C, Chan JE, Yarlagadda DVK, Park JS, Sussman C, Rudin CM, Lowe SW, Tammela T, Macias MJ, Koche RP, Massagué J. TGF-β and RAS jointly unmask primed enhancers to drive metastasis. Cell. 2024;187(22):6182-6199.e29. https://doi.org/10.1016/j.cell.2024.08.014.
Article CAS PubMed Google Scholar
Fan C, Xiong F, Zhang S, Gong Z, Liao Q, Li G, Guo C, Xiong W, Huang H, Zeng Z. Role of adhesion molecules in cancer and targeted therapy. Sci China Life Sci. 2024;67(5):940–57. https://doi.org/10.1007/s11427-023-2417-3.
Karalis T, Skandalis SS. Hyaluronan network: a driving force in cancer progression. Am J Physiol Cell Physiol. 2022;323(1):C145-c158. https://doi.org/10.1152/ajpcell.00139.2022.
Comments (0)