Dual inhibition of FAS and HAS2/3 by 4-MU in Realgar-Coptis chinensis unveils a metabolic checkpoint for liver cancer therapy

Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, Laversanne M, McGlynn KA, Soerjomataram I. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022;77(6):1598–606. https://doi.org/10.1016/j.jhep.2022.08.021.

Article  PubMed  PubMed Central  Google Scholar 

Draper A. A concise review of the changing landscape of hepatocellular carcinoma. Am J Manag Care. 2020;26(10 Suppl):S211-s219. https://doi.org/10.37765/ajmc.2020.88512.

Article  PubMed  Google Scholar 

Wu K, Lin F. Lipid metabolism as a potential target of liver cancer. J Hepatocell Carcinoma. 2024;11:327–46. https://doi.org/10.2147/jhc.S450423.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corn KC, Windham MA, Rafat M. Lipids in the tumor microenvironment: from cancer progression to treatment. Prog Lipid Res. 2020;80: 101055. https://doi.org/10.1016/j.plipres.2020.101055.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alannan M, Fayyad-Kazan H, Trézéguet V, Merched A. Targeting Lipid Metabolism in Liver Cancer. Biochemistry. 2020;59(41):3951–64. https://doi.org/10.1021/acs.biochem.0c00477.

Article  CAS  PubMed  Google Scholar 

Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31(1):62–76. https://doi.org/10.1016/j.cmet.2019.11.010.

Article  CAS  PubMed  Google Scholar 

Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22. https://doi.org/10.1038/s41416-019-0650-z.

Article  CAS  PubMed  Google Scholar 

Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res. 2023;46(11–12):855–81. https://doi.org/10.1007/s12272-023-01473-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, Yang JL. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol. 2023;16(1): 103. https://doi.org/10.1186/s13045-023-01498-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang T, Zhang X, Shan K, Luo Y, Yu T, Liu Z, Zhai J, Li S, Yin J, Han N. Various crystalline forms of realgar exhibit differentiated anti-abscess and anticancer effects based on a PXRD analysis and biological evaluation. J Ethnopharmacol. 2025;338(Pt3): 119122. https://doi.org/10.1016/j.jep.2024.119122.

Article  CAS  PubMed  Google Scholar 

Qian X, Wang Y, Liu Z, Fang F, Ma Y, Zhou L, Pan Y, Meng X, Yan B, Zhu X, Wang X, Zhao J, Liu S. Establishment of XRD fourier fingerprint identification method of realgar decoction pieces and its anti-tumor activity in tumor-in-situ transplanted mice. J Ethnopharmacol. 2024;331: 118303. https://doi.org/10.1016/j.jep.2024.118303.

Article  CAS  PubMed  Google Scholar 

Kim SY, Park C, Kim MY, Ji SY, Hwangbo H, Lee H, Hong SH, Han MH, Jeong JW, Kim GY, Son CG, Cheong J, Choi YH. ROS-mediated anti-tumor effect of Coptidis Rhizoma against human hepatocellular carcinoma Hep3B cells and xenografts. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22094797.

Article  PubMed  PubMed Central  Google Scholar 

Dong S, Xu P, Yang P, Jiao J, Cheng DC, Chen DL. “Huanglianjiedu Decoction” against pancreatic adenocarcinoma proliferation of by downregulating the PI3K/AKT/mTOR and MAPK/ERK1/2 signaling pathways. J Evid Based Integr Med. 2024. https://doi.org/10.1177/2515690x241291381.

Article  Google Scholar 

Xiaoxia X, Jing S, Dongbin X, Yonggang T, Jingke Z, Yanying Z, Hulai W. Realgar nanoparticles inhibit migration, invasion and metastasis in a mouse model of breast cancer by suppressing matrix metalloproteinases and angiogenesis. Curr Drug Deliv. 2020;17(2):148–58. https://doi.org/10.2174/1567201817666200115105633.

Article  CAS  PubMed  Google Scholar 

Li M, Shang H, Wang T, Yang SQ, Li L. Huanglian decoction suppresses the growth of hepatocellular carcinoma cells by reducing CCNB1 expression. World J Gastroenterol. 2021;27(10):939–58. https://doi.org/10.3748/wjg.v27.i10.939.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev. 2022;41(1):17–31. https://doi.org/10.1007/s10555-021-09996-w.

Article  CAS  PubMed  Google Scholar 

Raskov H, Gaggar S, Tajik A, Orhan A, Gögenur I. Metabolic switch in cancer - survival of the fittest. Eur J Cancer. 2023;180:30–51. https://doi.org/10.1016/j.ejca.2022.11.025.

Article  CAS  PubMed  Google Scholar 

Cui MY, Yi X, Zhu DX, Wu J. The role of lipid metabolism in gastric cancer. Front Oncol. 2022;12: 916661. https://doi.org/10.3389/fonc.2022.916661.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid metabolism and cancer. Life (Basel). 2022. https://doi.org/10.3390/life12060784.

Article  PubMed  PubMed Central  Google Scholar 

Li B, Mi J, Yuan Q. Fatty acid metabolism-related enzymes in colorectal cancer metastasis: from biological function to molecular mechanism. Cell Death Discov. 2024;10(1): 350. https://doi.org/10.1038/s41420-024-02126-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H, Xiong J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022;12(2):558–80. https://doi.org/10.1016/j.apsb.2021.09.019.

Article  CAS  PubMed  Google Scholar 

Zuo Q, Wu Y, Hu Y, Shao C, Liang Y, Chen L, Guo Q, Huang P, Chen Q. Targeting lipid reprogramming in the tumor microenvironment by traditional Chinese medicines as a potential cancer treatment. Heliyon. 2024;10(9): e30807. https://doi.org/10.1016/j.heliyon.2024.e30807.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng Y, He J, Zuo B, He Y. Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol. 2024;15(1): 206. https://doi.org/10.1007/s12672-024-01069-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gagneja S, Capalash N, Sharma P. Hyaluronic acid as a tumor progression agent and a potential chemotherapeutic biomolecule against cancer: a review on its dual role. Int J Biol Macromol. 2024;275(Pt2): 133744. https://doi.org/10.1016/j.ijbiomac.2024.133744.

Article  CAS  PubMed  Google Scholar 

Lee JH, Sánchez-Rivera FJ, He L, Basnet H, Chen FX, Spina E, Li L, Torner C, Chan JE, Yarlagadda DVK, Park JS, Sussman C, Rudin CM, Lowe SW, Tammela T, Macias MJ, Koche RP, Massagué J. TGF-β and RAS jointly unmask primed enhancers to drive metastasis. Cell. 2024;187(22):6182-6199.e29. https://doi.org/10.1016/j.cell.2024.08.014.

Article  CAS  PubMed  Google Scholar 

Fan C, Xiong F, Zhang S, Gong Z, Liao Q, Li G, Guo C, Xiong W, Huang H, Zeng Z. Role of adhesion molecules in cancer and targeted therapy. Sci China Life Sci. 2024;67(5):940–57. https://doi.org/10.1007/s11427-023-2417-3.

Article  PubMed  Google Scholar 

Karalis T, Skandalis SS. Hyaluronan network: a driving force in cancer progression. Am J Physiol Cell Physiol. 2022;323(1):C145-c158. https://doi.org/10.1152/ajpcell.00139.2022.

Article 

Comments (0)

No login
gif