Ga MELO. Stingless bees (meliponini). Switzerland: Springer; 2020.
Asem N, Abdul Gapar NA, Abd Hapit NH, et al. Correlation between total phenolic and flavonoid contents with antioxidant activity of Malaysian stingless bee propolis extract. J Apic Res. 2020;59(4):437–42. https://doi.org/10.1080/00218839.2019.1684050.
Hamzah SA, Zawawi N, Sabri S. A review on the association of bacteria with stingless bees. Sains Malaysiana. 2020. https://doi.org/10.17576/jsm-2020-4908-08.
Ristivojević P, Trifković J, Andrić F, et al. Poplar-type propolis: chemical composition, botanical origin and biological activity. Nat Prod Commun. 2015;10(11): 1934578X1501001117. https://doi.org/10.1177/1934578X1501001117.
Machado B, Pulcino TN, Silva AL, et al. Propolis as an alternative in prevention and control of dental cavity. J Apither. 2017. https://doi.org/10.5455/ja.20160726115117.
Kuropatnicki AK, Szliszka E, Krol W. Historical aspects of propolis research in modern times. Evid Complemen Altern Med. 2013. https://doi.org/10.1155/2013/964149.
Sung S-H, Choi G-H, Lee N-W, et al. External use of propolis for oral, skin, and genital diseases: a systematic review and meta-analysis. Evid Complement Altern Med. 2017. https://doi.org/10.1155/2017/8025752.
Elnakady YA, Rushdi AI, Franke R, et al. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia. Sci Rep. 2017. https://doi.org/10.1038/srep41453.
Article PubMed PubMed Central Google Scholar
Martinotti S, Ranzato E. Propolis: a new frontier for wound healing? Burns Trauma. 2015;3(1):1–7. https://doi.org/10.1186/s41038-015-0010-z.
Vd WAGH. Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Pharm Sci. 2013. https://doi.org/10.1155/2013/308249.
Stawiarz E, Dyduch J. The use of honey bee products of plant origin in apitherapy. Episteme. 2014;25:111–27.
Matuszewska E, Klupczynska A, Maciołek K, et al. Multielemental analysis of bee pollen, propolis, and royal jelly collected in west-central Poland. Molecules. 2021;26(9):2415. https://doi.org/10.3390/molecules26092415.
Article PubMed PubMed Central CAS Google Scholar
Ahangari Z, Naseri M, Vatandoost F. Propolis: chemical composition and its applications in endodontics. Iran Endod J. 2018;13(3):285. https://doi.org/10.22037/iej.v13i3.20994.
Article PubMed PubMed Central CAS Google Scholar
Pasupuleti VR, Sammugam L, Ramesh N, et al. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Long. 2017. https://doi.org/10.1155/2017/1259510.
Hayriye A. Effects of propolis on immune system. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 2018. 28(2): 99–104. https://dergipark.org.tr/en/pub/anadolu/issue/41816/504495.
Krol W, Scheller S, Czuba Z, et al. Inhibition of neutrophils’ chemiluminescence by ethanol extract of propolis (EEP) and its phenolic components. J Ethnopharmacol. 1996;55(1):19–25. https://doi.org/10.1016/s0378-8741(96)01466-3.
Article PubMed CAS Google Scholar
Kapare HS, Sathiyanarayanan L. Nutritional and therapeutic potential of propolis: a review. Res J Pharm Technol. 2020;13(7):3545–9. https://doi.org/10.5958/0974-360X.2020.00627.7.
Hodel KVS, Machado BAS, Santos NR, et al. Metal content of nutritional and toxic value in different types of brazilian propolis. Sci World J. 2020;2020(1):4395496. https://doi.org/10.1155/2020/4395496.
Pobiega K, Kot AM, Przybył JL, et al. Comparison of the chemical composition and antioxidant properties of propolis from urban apiaries. Molecules. 2023;28(18): 6744. https://doi.org/10.3390/molecules28186744.
Article PubMed PubMed Central CAS Google Scholar
Moskwa J, Naliwajko SK, Markiewicz-Żukowska R, et al. Propolis from poland versus propolis from new zealand-chemical composition and antiproliferative properties on glioblastoma cell lines. 2020.
Maroof K, Gan SH. A review on chemical compositions, biological activity and formulation techniques of Malaysian honey bee and meliponine propolis. J Biol Act Prod Nat. 2020;10(6):507–23. https://doi.org/10.1080/22311866.2020.1856716.
Pilario KE, Tielemans A, Mojica E-RE. Geographical discrimination of propolis using dynamic time warping kernel principal components analysis. Expert Syst App. 2022. https://doi.org/10.1016/j.eswa.2021.115938.
Chi Y, Luo L, Cui M, et al. Chemical composition and antioxidant activity of essential oil of Chinese propolis. Chem Biodivers. 2020. https://doi.org/10.1002/cbdv.201900489.
Massaro CF, Simpson JB, Powell D, et al. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia. Sci Nat. 2015;102:1–11. https://doi.org/10.1007/s00114-015-1318-z.
El-Guendouz S, Lyoussi B, Miguel MG. Insight on propolis from mediterranean countries: chemical composition, biological activities and application fields. Chem Biodiv. 2019. https://doi.org/10.1002/cbdv.201900094.
Oliveira L, Macedo M, Rodrigues J, et al. Plant metabolite 5-pentadecyl resorcinol is produced by the amazonian fungus penicillium sclerotiorum lm 5679. Braz J Biol. 2021. https://doi.org/10.1590/1519-6984.241863.
Romagnoli C, Baldisserotto A, Vicentini CB, et al. Antidermatophytic action of resorcinol derivatives: ultrastructural evidence of the activity of phenylethyl resorcinol against microsporum gypseum. Molecules. 2016;21(10): 1306. https://doi.org/10.3390/molecules21101306.
Article PubMed PubMed Central CAS Google Scholar
Zhang Y-J, Chen X, Zhang L, et al. Protective effects of 3, 4-dihydroxyphenylethanol on spinal cord injury-induced oxidative stress and inflammation. NeuroReport. 2019;30(15):1016–24. https://doi.org/10.1097/wnr.0000000000001318.
Article PubMed CAS Google Scholar
Shehata MG, Ahmad FT, Badr AN, et al. Chemical analysis, antioxidant, cytotoxic and antimicrobial properties of propolis from different geographic regions. Ann Agric Sci. 2020;65(2):209–17. https://doi.org/10.1016/j.aoas.2020.12.001.
Harbatsevich H, Loginova N, Nabebina K, et al. Nickel (ii) complexes with ‘non innocent’ligands–cycloaminomethyl derivatives of 1, 2-dihydroxybenzene: sod-like and antimicrobial activity. RAD Assoc J. 2017;2(2):129–33. https://doi.org/10.21175/RadJ.2017.02.027.
Krishna CM, Liebmann JE, Kaufman D, et al. The catecholic metal sequestering agent 1, 2-dihydroxybenzene-3, 5-disulfonate confers protection against oxidative cell damage. Arch Biochem Biophys. 1992;294(1):98–106. https://doi.org/10.1016/0003-9861(92)90142-j.
Article PubMed CAS Google Scholar
Kerdsomboon K, Chumsawat W, Auesukaree C. Effects of moringa oleifera leaf extracts and its bioactive compound gallic acid on reducing toxicities of heavy metals and metalloid in saccharomyces cerevisiae. Chemosphere. 2021;270: 128659. https://doi.org/10.1016/j.chemosphere.2020.128659.
Article PubMed CAS Google Scholar
Wu Y, Li K, Zeng M, et al. Serum metabolomics analysis of the anti-inflammatory effects of gallic acid on rats with acute inflammation. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2022.830439.
Article PubMed PubMed Central Google Scholar
Ismail T, Sulaiman SA, Ponnuraj KT, et al. Chemical constituents of malaysian apis mellifera propolis. Sains Malays. 2018. https://doi.org/10.17576/jsm-2018-4701-14.
Deng Z, Li C, Luo D, et al. A new cinnamic acid derivative from plant-derived endophytic fungus pyronema sp. Nat Prod Res. 2017;31(20):2413–9. https://doi.org/10.1080/14786419.2017.1311890.
Article PubMed CAS Google Scholar
Lan J-S, Hou J-W, Liu Y, et al. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing n-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for alzheimer’s disease. J Enzyme Inhib Med Chem. 2017;32(1):776–88.
Comments (0)