Acosta C, Anderson HD, Anderson CM (2017) Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 95:2430–2447. https://doi.org/10.1002/jnr.24075
Article PubMed CAS Google Scholar
Aghanoori MR, Smith DR, Roy Chowdhury S, Sabbir MG, Calcutt NA, Fernyhough P (2017) Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats. Exp Neurol 297:148–157. https://doi.org/10.1016/j.expneurol.2017.08.005
Article PubMed PubMed Central CAS Google Scholar
Alber J, Maruff P, Santos CY, Ott BR, Salloway SP, Yoo DC et al (2020) Disruption of cholinergic neurotransmission, within a cognitive challenge paradigm, is indicative of Aβ-related cognitive impairment in preclinical Alzheimer’s disease after a 27-month delay interval. Alzheimers Res Ther 12:31. https://doi.org/10.1186/s13195-020-00599-1
Article PubMed PubMed Central CAS Google Scholar
Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science (New York, NY) 217:408–414. https://doi.org/10.1126/science.7046051
Beeri MS, Schmeidler J, Silverman JM, Gandy S, Wysocki M, Hannigan CM et al (2008) Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology 71:750–757. https://doi.org/10.1212/01.wnl.0000324925.95210.6d
Article PubMed PubMed Central CAS Google Scholar
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. https://doi.org/10.1007/s00401-006-0127-z
Article PubMed PubMed Central Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/bf00308809
Article PubMed CAS Google Scholar
Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9
Chen XL, Fortes JM, Hu YT, van Iersel J, He KN, Heerikhuize J et al (2023) Sexually dimorphic age-related molecular differences in the entorhinal cortex of cognitively intact elderly: Relation to early Alzheimer’s changes. Alzheimer’s Dementia 19:3848–3857. https://doi.org/10.1002/alz.13037
Article PubMed CAS Google Scholar
Correa-da-Silva F, Carter J, Wang XY, Sun R, Pathak E, Kuhn JMM et al (2024) Microglial phagolysosome dysfunction and altered neural communication amplify phenotypic severity in Prader-Willi syndrome with larger deletion. Acta Neuropathol 147:64. https://doi.org/10.1007/s00401-024-02714-0
Article PubMed PubMed Central CAS Google Scholar
Correa-da-Silva F, Kalsbeek MJ, Gadella FS, Oppersma J, Jiang W, Wolff SEC et al (2023) Reduction of oxytocin-containing neurons and enhanced glymphatic activity in the hypothalamic paraventricular nucleus of patients with type 2 diabetes mellitus. Acta Neuropathol Commun 11:107. https://doi.org/10.1186/s40478-023-01606-w
Article PubMed PubMed Central CAS Google Scholar
Dubelaar EJ, Verwer RW, Hofman MA, Van Heerikhuize JJ, Ravid R, Swaab DE (2004) ApoE epsilon4 genotype is accompanied by lower metabolic activity in nucleus basalis of Meynert neurons in Alzheimer patients and controls as indicated by the size of the Golgi apparatus. J Neuropathol Exp Neurol 63:159–169. https://doi.org/10.1093/jnen/63.2.159
Article PubMed CAS Google Scholar
Dulawa SC, Janowsky DS (2019) Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol Psychiatry 24:694–709. https://doi.org/10.1038/s41380-018-0219-x
Article PubMed CAS Google Scholar
Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6
Article PubMed CAS Google Scholar
Freiherr J, Hallschmid M, Frey WH 2nd, Brunner YF, Chapman CD, Holscher C et al (2013) Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 27:505–514. https://doi.org/10.1007/s40263-013-0076-8
Article PubMed PubMed Central CAS Google Scholar
Gao Y, Ottaway N, Schriever SC, Legutko B, Garcia-Caceres C, de la Fuente E et al (2014) Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62:17–25. https://doi.org/10.1002/glia.22580
Geula C, Dunlop SR, Ayala I, Kawles AS, Flanagan ME, Gefen T et al (2021) Basal forebrain cholinergic system in the dementias: vulnerability, resilience, and resistance. J Neurochem 158:1394–1411. https://doi.org/10.1111/jnc.15471
Article PubMed PubMed Central CAS Google Scholar
Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ et al (1999) Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 411:693–704
Article PubMed CAS Google Scholar
Gonzalez-Reyes RE, Nava-Mesa MO, Vargas-Sanchez K, Ariza-Salamanca D, Mora-Munoz L (2017) Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci 10:427. https://doi.org/10.3389/fnmol.2017.00427
Article PubMed PubMed Central CAS Google Scholar
Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438:954–959. https://doi.org/10.1038/nature04481
Article PubMed CAS Google Scholar
Gudala K, Bansal D, Schifano F, Bhansali A (2013) Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J Diabetes Investig 4:640–650. https://doi.org/10.1111/jdi.12087
Article PubMed PubMed Central Google Scholar
Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715. https://doi.org/10.1016/j.conb.2006.09.002
Article PubMed PubMed Central CAS Google Scholar
Hogenboom R, Kalsbeek MJ, Korpel NL, de Goede P, Koenen M, Buijs RM et al (2019) Loss of arginine vasopressin- and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of individuals with type 2 diabetes. Diabetologia 62:2088–2093. https://doi.org/10.1007/s00125-019-4953-7
Article PubMed PubMed Central CAS Google Scholar
Hölscher C (2014) First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimers Dement 10:S33-37. https://doi.org/10.1016/j.jalz.2013.12.006
Hughes V (2012) Microglia: the constant gardeners. Nature 485:570–572. https://doi.org/10.1038/485570a
Article PubMed CAS Google Scholar
Hulette CM, Ervin JF, Edmonds Y, Antoine S, Stewart N, Szymanski MH et al (2009) Cerebrovascular smooth muscle actin is increased in nondemented subjects with frequent senile plaques at autopsy: implications for the pathogenesis of Alzheimer disease. J Neuropathol Exp Neurol 68:417–424. https://doi.org/10.1097/NEN.0b013e31819e6334
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111. https://doi.org/10.1126/scitranslmed.3003748
Comments (0)