Drazner, M. H. 2011. The progression of hypertensive heart disease. Circulation 123:327–334.
Martin, S. S., A. W. Aday, Z. I. Almarzooq, C. A. M. Anderson, P. Arora, C. L. Avery, C. M. Baker-Smith, B. Barone Gibbs, A. Z. Beaton, and A. K. Boehme et al. 2024. 2024 heart disease and stroke statistics: A report of US and global data from the American heart association. Circulation 149:e347–e913.
Article PubMed PubMed Central Google Scholar
Mills, K. T., A. Stefanescu, and J. He. 2020. The global epidemiology of hypertension. Nature Reviews Nephrology 16:223–237.
Article CAS PubMed PubMed Central Google Scholar
Khalid, S. N., T. Mansoor, M. I. Bilal, S. H. Ijaz, M. Fudim, S. J. Greene, V. Nambi, S. S. Virani, G. C. Fonarow, and D. Abramov et al. 2024. Ongoing and future clinical trials of device therapies for patients with heart failure. Current Problems in Cardiology 49:102805.
Ketabi, M., Z. Mohammadi, Z. Fereidouni, O. Keshavarzian, Z. Karimimoghadam, F. Sarvi, R. Tabrizi, and M. Khodadost. 2024. The effect of recurrent heart failure hospitalizations on the risk of cardiovascular and all-Cause mortality: A systematic review and Meta-Analysis. Current Cardiology Reports 26:1113–1122.
Khan, M.S., I. Shahid, A. Bennis, A. Rakisheva, M. Metra, and J. Butler. 2024. Global epidemiology of heart failure. Nature Reviews Cardiology 21: 717–734.
Dordevic, D. B., G. P. Koracevic, A. D. Dordevic, and D. B. Lovic. 2024. Hypertension and left ventricular hypertrophy. Journal of Hypertension 42:1505–1515.
Article CAS PubMed Google Scholar
Nishida, M., X. Mi, Y. Ishii, Y. Kato, and A. Nishimura. 2024. Cardiac remodeling: Novel pathophysiological mechanisms and therapeutic strategies. J Biochem 176:255–262.
Article CAS PubMed Google Scholar
Del Re, D. P., D. Amgalan, A. Linkermann, Q. Liu, and R. N. Kitsis. 2019. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiological Reviews 99:1765–1817.
Article CAS PubMed PubMed Central Google Scholar
Martens, M. D., J. Karch, and J. W. Gordon. 2022. The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis 1868:166297.
Article CAS PubMed Google Scholar
Ahola, S., and T. Langer. 2024. Ferroptosis in mitochondrial cardiomyopathy. Trends in Cell Biology 34:150–160.
Article CAS PubMed Google Scholar
Song, Z., J. Wang, and L. Zhang. 2024. Ferroptosis: A new mechanism in diabetic cardiomyopathy. International Journal of Medical Sciences 21:612–622.
Article CAS PubMed PubMed Central Google Scholar
Sun, H., D. Chen, W. Xin, L. Ren, Q. Li, and X. Han. 2023. Targeting ferroptosis as a promising therapeutic strategy to treat cardiomyopathy. Frontiers in Pharmacology 14:1146651.
Article CAS PubMed PubMed Central Google Scholar
Jiang, X., B. R. Stockwell, and M. Conrad. 2021. Ferroptosis: Mechanisms, biology and role in disease. Nature Reviews Molecular Cell Biology 22:266–282.
Article PubMed PubMed Central Google Scholar
Lv, Y., M. Wu, Z. Wang, and J. Wang. 2023. Ferroptosis: From regulation of lipid peroxidation to the treatment of diseases. Cell Biology and Toxicology 39:827–851.
Ding, K., C. Liu, L. Li, M. Yang, N. Jiang, S. Luo, and L. Sun. 2023. Acyl-CoA synthase ACSL4: An essential target in ferroptosis And fatty acid metabolism. Chin Med J (Engl) 136:2521–2537.
Article CAS PubMed Google Scholar
Jia, B., J. Li, Y. Song, and C. Luo. 2023. ACSL4-Mediated ferroptosis and its potential role in central nervous system diseases and injuries. International Journal of Molecular Sciences 24:10021.
Article CAS PubMed PubMed Central Google Scholar
Li, B., K. Cheng, T. Wang, X. Peng, P. Xu, G. Liu, D. Xue, N. Jiao, and C. Wang. 2024. Research progress on GPX4 targeted compounds. European Journal of Medicinal Chemistry 274:116548.
Article CAS PubMed Google Scholar
Wei, C. 2024. The role of glutathione peroxidase 4 in neuronal ferroptosis and its therapeutic potential in ischemic and hemorrhagic stroke. Brain Research Bulletin 217:111065.
Article CAS PubMed Google Scholar
Yang, X., N. K. Kawasaki, J. Min, T. Matsui, and F. Wang. 2022. Ferroptosis in heart failure. Journal of Molecular and Cellular Cardiology 173:141–153.
Article CAS PubMed PubMed Central Google Scholar
Zhang, K., X. M. Tian, W. Li, and L. Y. Hao. 2023. Ferroptosis in cardiac hypertrophy and heart failure. Biomedicine & Pharmacotherapy 168:115765.
Bi, X., X. Wu, J. Chen, X. Li, Y. Lin, Y. Yu, X. Fang, X. Cheng, Z. Cai, and T. Jin et al. 2024. Characterization of ferroptosis-triggered pyroptotic signaling in heart failure. Signal Transduct Target Ther 9:257.
Article CAS PubMed PubMed Central Google Scholar
Fenton, N. M., L. Qian, E. G. Paine, L. J. Sharpe, and A. J. Brown. 2024. A paredox in the control of cholesterol biosynthesis: Does the NADPH sensor and E3 ubiquitin ligase MARCHF6 protect mammalian cells during oxidative stress by controlling sterol biosynthesis? Bioessays 46:e2400073.
Park, S. E., J. M. Kim, O. H. Seok, H. Cho, B. Wadas, S. Y. Kim, A. Varshavsky, and C. S. Hwang. 2015. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 347:1249–1252.
Article CAS PubMed PubMed Central Google Scholar
Wu, K., S. Itskanov, D. L. Lynch, Y. Chen, A. Turner, J. C. Gumbart, and E. Park. 2024. Substrate recognition mechanism of the Endoplasmic reticulum-associated ubiquitin ligase Doa10. Nature Communications 15:2182.
Article CAS PubMed PubMed Central Google Scholar
Fenton, N. M., L. Qian, N. A. Scott, E. G. Paine, L. J. Sharpe, and A. J. Brown. 2024. SC5D is the sixth enzyme in cholesterol biosynthesis targeted by the E3 ubiquitin ligase MARCHF6. Biochim Biophys Acta Mol Cell Biol Lipids 1869:159482.
Article CAS PubMed Google Scholar
Qian, L., N. A. Scott, I. M. Capell-Hattam, E. A. Draper, N. M. Fenton, W. Luu, L. J. Sharpe, and A. J. Brown. 2023. Cholesterol synthesis enzyme SC4MOL is fine-tuned by sterols and targeted for degradation by the E3 ligase MARCHF6. Journal of Lipid Research 64:100362.
Article CAS PubMed PubMed Central Google Scholar
Scott, N. A., L. J. Sharpe, and A. J. Brown. 2021. The E3 ubiquitin ligase MARCHF6 as a metabolic integrator in cholesterol synthesis and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 1866:158837.
Article CAS PubMed Google Scholar
Zelcer, N., L. J. Sharpe, A. Loregger, I. Kristiana, E. C. Cook, L. Phan, J. Stevenson, and A. J. Brown. 2014. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Molecular and Cellular Biology 34:1262–1270.
Article PubMed PubMed Central Google Scholar
Nguyen, K. T., S. H. Mun, J. Yang, J. Lee, O. H. Seok, E. Kim, D. Kim, S. Y. An, D. Y. Seo, and J. Y. Suh et al. 2022. The MARCHF6 E3 ubiquitin ligase acts as an NADPH sensor for the regulation of ferroptosis. Nature Cell Biology 24:1239–1251.
Comments (0)