Neutrophil Heterogeneity in Airway Inflammatory Diseases

Mayadas, Tanya N., Xavier Cullere, and Clifford A. Lowell. 2014. The multifaceted functions of neutrophils. Annual Review of Pathology: Mechanisms of Disease 9:181–218. https://doi.org/10.1146/annurev-pathol-020712-164023

Article  CAS  Google Scholar 

Rosales, C. 2018. Neutrophil: A cell with many roles in inflammation or several cell types? Frontiers in Physiology. https://doi.org/10.3389/fphys.2018.00113.

Article  PubMed  PubMed Central  Google Scholar 

Hidalgo, A., E. Chilvers, C. Summers, and L. Koenderman. 2019. The neutrophil life cycle. Trends In Immunology. https://doi.org/10.1016/j.it.2019.04.013.

Article  PubMed  Google Scholar 

Coffelt, Seth B., D. Max, Wellenstein, E. Karin, and De Visser. 2016. Neutrophils in cancer: Neutral no more. Nature Reviews Cancer 16:431–446. https://doi.org/10.1038/nrc.2016.52

Article  PubMed  CAS  Google Scholar 

Cuartero, María Isabel., Iván. Ballesteros, Ana Moraga, Florentino Nombela, José Vivancos, John A. Hamilton, Ángel. L. Corbí, Ignacio Lizasoain, and María A. Moro. 2013. N2 neutrophils, novel players in brain inflammation after stroke: Modulation by the PPARγ agonist rosiglitazone. Stroke 44: 3498–3508. https://doi.org/10.1161/STROKEAHA.113.002470.

Article  PubMed  CAS  Google Scholar 

Gupta, Sarthak, and Mariana J. Kaplan. 2016. The role of neutrophils and NETosis in autoimmune and renal diseases. Nature Reviews Nephrology 12:402–413. https://doi.org/10.1038/nrneph.2016.71

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ma, Yonggang, Andriy Yabluchanskiy, Rugmani Padmanabhan Iyer, Presley L. Cannon, Elizabeth R. Flynn, Mira Jung, Jeffrey Henry, Courtney A. Cates, Y. Kristine, Deleon-Pennell, and Merry L. Lindsey. 2016. Temporal neutrophil polarization following myocardial infarction. Cardiovascular Research 110:51–61. https://doi.org/10.1093/cvr/cvw024

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tsuda, Yasuhiro, Hitoshi Takahashi, Makiko Kobayashi, Toshiaki Hanafusa, David N.. Herndon, and Fujio Suzuki. 2004. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by Methicillin-resistant Staphylococcus aureus. Immunity 21: 215–226. https://doi.org/10.1016/j.immuni.2004.07.006.

Article  PubMed  CAS  Google Scholar 

Ballesteros, I., Andrea Rubio-Ponce, M. Genua, Eleonora Lusito, Immanuel Kwok, Gabriel Fernández-Calvo, and Tariq E. Khoyratty et al. 2020. Co-option of neutrophil fates by tissue environments. Cell 183:1282–1297e18. https://doi.org/10.1016/j.cell.2020.10.003

Article  PubMed  CAS  Google Scholar 

Doerschuk, C. M., M. F. Allard, B. A. Martin, A. MacKenzie, A. P. Autor, and J. C. Hogg. 1987. Marginated pool of neutrophils in rabbit lungs. Journal of Applied Physiology 63:1806–1815. https://doi.org/10.1152/jappl.1987.63.5.1806

Article  PubMed  CAS  Google Scholar 

Lien, D.C., W.W. Wagner, R.L. Capen, C. Haslett, W.L. Hanson, S.E. Hofmeister, P.M. Henson, and G.S. Worthen. 1987. Physiological neutrophil sequestration in the lung: visual evidence for localization in capillaries. Journal of Applied Physiology (Bethesda, Md.: 1985) 62: 1236–1243.

Article  PubMed  CAS  Google Scholar 

Kuebler, W.M., G.E. Kuhnle, J. Groh, and A.E. Goetz. 1994. Leukocyte kinetics in pulmonary microcirculation: Intravital fluorescence microscopic study. Journal of Applied Physiology 76 (1): 65–71. https://doi.org/10.1152/jappl.1994.76.1.65.

Article  PubMed  CAS  Google Scholar 

Doyle, N. A., S. D. Bhagwan, B. B. Meek, G. J. Kutkoski, D. A. Steeber, T. F. Tedder, and C. M. Doerschuk. 1997. Neutrophil margination, sequestration, and emigration in the lungs of L-selectin-deficient mice. Journal of Clinical Investigation 99:526–533. https://doi.org/10.1172/JCI119189

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kreisel, Daniel, Ruben G.. Nava, Wenjun Li, Bernd H.. Zinselmeyer, Baomei Wang, Jiaming Lai, Robert Pless, Andrew E.. Gelman, Alexander S.. Krupnick, and Mark J.. Miller. 2010. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proceedings of the National Academy of Sciences of the United States of America 107: 18073–18078. https://doi.org/10.1073/pnas.1008737107.

Article  PubMed  PubMed Central  Google Scholar 

Hogg, J.C., H.O. Coxson, M.L. Brumwell, N. Beyers, C.M. Doerschuk, W. MacNee, and B.R. Wiggs. 1994. Erythrocyte and polymorphonuclear cell transit time and concentration in human pulmonary capillaries. Journal of Applied Physiology (Bethesda, Md.: 1985) 77: 1795–1800.

Article  PubMed  CAS  Google Scholar 

Li, Jia, Wu. Chen, Huimin Liu, Hong Liu, Sirui Xiang, Fengming You, Yifang Jiang, Junzhi Lin, Dingkun Zhang, and Chuan Zheng. 2023. Pharmacologic effects approach of essential oils and their components on respiratory diseases. Journal of Ethnopharmacology 304: 115962. https://doi.org/10.1016/j.jep.2022.115962.

Article  PubMed  CAS  Google Scholar 

Scozzi, Davide, Fuyi Liao, Alexander S. Krupnick, Daniel Kreisel, and Andrew E. Gelman. 2022. The role of neutrophil extracellular traps in acute lung injury. Frontiers in Immunology 13:953195. https://doi.org/10.3389/fimmu.2022.953195

Article  PubMed  PubMed Central  CAS  Google Scholar 

Keir, Holly R., and James D. Chalmers. 2022. Neutrophil extracellular traps in chronic lung disease: Implications for pathogenesis and therapy. European Respiratory Review 31:210241. https://doi.org/10.1183/16000617.0241-2021

Article  PubMed  PubMed Central  Google Scholar 

Singh, Jeeshan, Michael Boettcher, Maximilian Dölling, Annika Heuer, Bettina Hohberger, Moritz Leppkes, Elisabeth Naschberger, et al. 2023. Moonlighting chromatin: When DNA escapes nuclear control. Cell Death and Differentiation 30: 861–875. https://doi.org/10.1038/s41418-023-01124-1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xuan, Nanxia, Jie Zhao, Zhiying Kang, Wei Cui, and Tian Bao-Ping. 2023. Neutrophil extracellular traps and their implications in airway inflammatory diseases. Frontiers in Medicine 10:1331000. https://doi.org/10.3389/fmed.2023.1331000

Article  PubMed  Google Scholar 

Ackerman, G. A, Histochemical differentiation during, and neutrophil development and maturation*. 1964. Annals of the New York Academy of Sciences 113:537–565. https://doi.org/10.1111/j.1749-6632.1964.tb40690.x.

Cronkite, E.P., T.M. Fliedner, V.P. Bond, and J.R. Rubini. 1959. Dynamics of hemopoietic proliferation in man and mice studied by H3-thymidine incorporation into DNA. Annals of the New York Academy of Sciences 77: 803–820. https://doi.org/10.1111/j.1749-6632.1959.tb36943.x.

Article  PubMed  CAS  Google Scholar 

Dancey, J. T., K. A. Deubelbeiss, L. A. Harker, and C. A. Finch. 1976. Neutrophil kinetics in man. The Journal of Clinical Investigation 58:705–715. https://doi.org/10.1172/JCI108517

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fliedner, T.M., E.P. Cronkite, S.A. Killmann, and V.P. Bond. 1964. Granulocytopoiesis. II. Emergence and pattern of labeling of neutrophilic granulocytes in humans. Blood 24: 683–700.

Article  PubMed  CAS  Google Scholar 

Steinbach, K. H., P. Schick, F. Trepel, H. Raffler, J. Döhrmann, G. Heilgeist, and W. Heltzel et al. 1979. Estimation of kinetic parameters of neutrophilic, eosinophilic, and basophilic granulocytes in human blood. Blut 39:27–38. https://doi.org/10.1007/BF01008072

Article  PubMed  CAS  Google Scholar 

Tak, Tamar, Kiki Tesselaar, Janesh Pillay, José A. M.. Borghans, and Leo Koenderman. 2013. What’s your age again? Determination of human neutrophil half-lives revisited. Journal of Leukocyte Biology 94: 595–601. https://doi.org/10.1189/jlb.1112571.

Article  PubMed  CAS  Google Scholar 

Orr, Yishay, David P. Wilson, Jude M. Taylor, Paul G. Bannon, Carolyn Geczy, Miles P. Davenport, and Leonard Kritharides. 2007. A kinetic model of bone marrow neutrophil production that characterizes late phenotypic maturation. American Journal of Physiology Regulatory Integrative and Comparative Physiology 292:R1707–1716. https://doi.org/10.1152/ajpregu.00627.2006

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif