Evaluation of Cardiac IL-11 and IL-11Rα Expression During Infection

Garg, Nisha J., Kevin M. Bonney, Stacey A. Kim, David M. Engman, and Daniel J. Luthringer. 2018. Pathology and Pathogenesis of Chagas Heart Disease. Annual Review of Pathology: Mechanisms of Disease 14:421–447. https://doi.org/10.1146/annurev-pathol-020117-043711.

Article  CAS  Google Scholar 

Cunha-Neto, Edecio, and Christophe Chevillard. 2014. Chagas disease cardiomyopathy: Immunopathology and genetics. Mediators of Inflammation 2014. https://doi.org/10.1155/2014/683230.

Dias, João Carlos., Alberto Novaes Pinto, Eliane Dias Ramos, Alejandro Luquetti Gontijo, Maria Aparecida Shikanai-Yasuda, José Rodrigues. Coura, RosáliaMorais. Torres, et al. 2016. 2nd Brazilian Consensus on Chagas disease, 2015. Revista da Sociedade Brasileira de Medicina Tropical 49:3–60. https://doi.org/10.1590/0037-8682-0505-2016.

Article  Google Scholar 

Rassi, Anis, Anis Rassi, and José Antonio Marin-Neto. 2009. Chagas heart disease: pathophysiologic mechanisms, prognostic factors and risk stratification. Memórias do Instituto Oswaldo Cruz 104. Instituto Oswaldo Cruz, Ministério da Saúde: 152–158. https://doi.org/10.1590/S0074-02762009000900021.

Henao-martínez, Andrés F, David A Schwartz, and Ivana V Yang. 2012. Chagasic cardiomyopathy, from acute to chronic: is this mediated by host. Transactions of the Royal Society of Tropical Medicine and Hygiene 106. Royal Society of Tropical Medicine and Hygiene: 521–527. https://doi.org/10.1016/j.trstmh.2012.06.006.

Rodriguez, Hector O., Néstor A. Guerrero, Alen Fortes, Julien Santi-Rocca, Núria Gironès, and Manuel Fresno. 2014. Trypanosoma cruzi strains cause different myocarditis patterns in infected mice. Acta Tropica 139. Elsevier B.V.: 57–66. https://doi.org/10.1016/j.actatropica.2014.07.005.

Coura, José Rodrigues. 2007. Chagas disease: What is known and what is needed - A background article. Memórias do Instituto Oswaldo Cruz 102:113–122. https://doi.org/10.1590/s0074-02762007007500001.

Article  PubMed  Google Scholar 

Barretto, Antonio Carlos, Charles Mady Pereira, Edmundo Arteage-Fernandez, Noedir Stolf, Edgard Augusto Lopes, Maria de Lourdes, Giovanni Bellotti Higuchi, and Fulvio Pileggi. 1986. Right ventricular endomyocardial biopsy in chronic Chagas’ disease. American Heart Journal 111:307–312. https://doi.org/10.1016/0002-8703(86)90144-4.

Article  Google Scholar 

Rossi, Marcos A. 1998. Fibrosis and inflammatory cells in human chronic chagasic myocarditis : Scanning electron microscopy and immunohistochemical observations 66:183–194.

CAS  Google Scholar 

Adami, Eleonora, Sivakumar Viswanathan, Anissa A. Widjaja, Benjamin Ng, Sonia Chothani, Nevin Zhihao, Jessie Tan, et al. 2021. IL11 is elevated in systemic sclerosis and IL11-dependent ERK signalling underlies TGFβ-mediated activation of dermal fibroblasts. Rheumatology (United Kingdom) 60:5820–5826. https://doi.org/10.1093/rheumatology/keab168.

Article  CAS  Google Scholar 

Lim, Wei Wen, Ben Corden, Benjamin Ng, Konstantinos Vanezis, Giuseppe D’Agostino, Anissa A. Widjaja, Wei Hua Song, et al. 2020. Interleukin-11 is important for vascular smooth muscle phenotypic switching and aortic inflammation, fibrosis and remodeling in mouse models. Scientific Reports 10. Nature Publishing Group UK: 1–18. https://doi.org/10.1038/s41598-020-74944-7.

Ng, Benjamin, Jinrui Dong, Giuseppe D’Agostino, Sivakumar Viswanathan, Anissa A. Widjaja, Wei Wen Lim, Nicole S.J.. Ko, et al. 2019. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Science Translational Medicine 11:1–15. https://doi.org/10.1126/scitranslmed.aaw1237.

Article  CAS  Google Scholar 

Schafer, Sebastian, Sivakumar Viswanathan, Anissa A. Widjaja, Wei Wen Lim, Aida Moreno-Moral, Daniel M. DeLaughter, Benjamin Ng, et al. 2017. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552. Nature: 110–115. https://doi.org/10.1038/NATURE24676.

Braga, Yarlla Loyane Lira, José Rodrigues do Carmo Neto, Pablo Igor Ribeiro Franco, Fernanda Rodrigues Helmo, Marlene Antônia dos Reis, Flávia Aparecida de Oliveira, Mara Rúbia Nunes Celes, Marcos Vinícius da Silva, and Juliana Reis Machado. 2024. The Influence of IL-11 on Cardiac Fibrosis in Experimental Models: A Systematic Review. Journal of Cardiovascular Development and Disease 11. Multidisciplinary Digital Publishing Institute (MDPI): 65. https://doi.org/10.3390/JCDD11020065.

Bai, Xin, Guolin Zhao, Qijing Chen, Zhongyu Li, Mingzhu Gao, William Ho, Xu. Xiaoyang, and Xue Qing Zhang. 2022. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Science Advances 8:1–18. https://doi.org/10.1126/sciadv.abn7162.

Article  CAS  Google Scholar 

Corden, Ben, Wei Wen Lim, Weihua Song, Xie Chen, Nicole S.J.. Ko, Su. Liping, Nicole G.Z.. Tee, Eleonora Adami, Sebastian Schafer, and Stuart A. Cook. 2021. Therapeutic Targeting of Interleukin-11 Signalling Reduces Pressure Overload-Induced Cardiac Fibrosis in Mice. Journal of Cardiovascular Translational Research 14:222–228. https://doi.org/10.1007/s12265-020-10054-z.

Article  PubMed  Google Scholar 

Lim, Wei Wen, Ben Corden, Lei Ye, Sivakumar Viswanathan, Anissa A. Widjaja, Chen Xie, Liping Su, Nicole G.Z. Tee, Sebastian Schafer, and Stuart A. Cook. 2021. Antibody-mediated neutralization of IL11 signalling reduces ERK activation and cardiac fibrosis in a mouse model of severe pressure overload. Clinical and experimental pharmacology & physiology 48. Clin Exp Pharmacol Physiol: 605–613. https://doi.org/10.1111/1440-1681.13458.

Liebert, Mary Ann, Mary Bozza, Judith L Bliss, Andrew J Dorner, and William L Trepicchio. 2001. Interleukin-11 Modulates Th1 / Th2 Cytokine Production 30: 21–30.

Curti, Antonio, Marina Ratta, Silvia Corinti, Giampiero Girolomoni, Francesca Ricci, Pierluigi Tazzari, Michela Siena, et al. 2001. Interleukin-11 induces Th2 polarization of human CD4+ T cells. Blood 97:2758–2763. https://doi.org/10.1182/blood.V97.9.2758.

Article  PubMed  CAS  Google Scholar 

Xu, Dixon H., Ziwen Zhu, Mark R. Wakefield, Huaping Xiao, Qian Bai, and Yujiang Fang. 2016. The role of IL-11 in immunity and cancer. Cancer Letters. Vol. 373. Elsevier Ireland Ltd. https://doi.org/10.1016/j.canlet.2016.01.004.

Zhang, Xin, Nazanin Kiapour, Sahil Kapoor, Joseph R. Merrill, Yongjuan Xia, Woomi Ban, Stephanie M. Cohen, et al. 2018. IL-11 antagonist suppresses Th17 cell-mediated neuroinflammation and demyelination in a mouse model of relapsing-remitting multiple sclerosis. Clinical Immunology 197. Elsevier Inc: 45–53. https://doi.org/10.1016/j.clim.2018.08.006.

Chen, Haiyun, Hongjie Chen, Jialong Liang, Xin Gu, Jiawen Zhou, Chunfeng Xie, Xianhui Lv, et al. 2020. TGF-β1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency. Experimental and Molecular Medicine 52. Springer US: 130–151. https://doi.org/10.1038/s12276-019-0371-7.

Kapina, Marina A., Galina S. Shepelkova, Vadim G. Avdeenko, Anna N. Guseva, Tatiana K. Kondratieva, Vladimir V. Evstifeev, and Alexander S. Apt. 2011. Interleukin-11 drives early lung inflammation during mycobacterium tuberculosis infection in genetically susceptible mice. PLoS ONE 6. https://doi.org/10.1371/journal.pone.0021878.

Lawitz, Eric J., Matthew J. Hepburn, and Thomas J. Casey. 2004. A pilot study of interleukin-11 in subjects with chronic hepatitis C and advanced liver disease nonresponsive to antiviral therapy. American Journal of Gastroenterology 99:2359–2364. https://doi.org/10.1111/j.1572-0241.2004.40047.x.

Article  PubMed  CAS  Google Scholar 

Traber, Katrina E., Ernest L. Dimbo, Elise M. Symer, Filiz T. Korkmaz, Matthew R. Jones, Joseph P. Mizgerd, and Lee J. Quinton. 2019. Roles of interleukin-11 during acute bacterial pneumonia. PLoS ONE 14:1–16. https://doi.org/10.1371/journal.pone.0221029.

Article  CAS  Google Scholar 

Herreros-Cabello, Alfonso, Javier del Moral-Salmoral, Esperanza Morato, Anabel Marina, Beatriz Barrocal, Manuel Fresno, and Núria Gironès. 2024. Quantitative Proteomic Analysis of Macrophages Infected with Trypanosoma cruzi Reveals Different Responses Dependent on the SLAMF1 Receptor and the Parasite Strain. International Journal of Molecular Sciences 25. Multidisciplinary Digital Publishing Institute (MDPI): 7493. https://doi.org/10.3390/IJMS25137493/S1.

Nisimura, Lindice M., Laura L. Coelho, Tatiana G. de Melo, Paloma de Carvalho Vieira, Pedro H. Victorino, Luciana R. Garzoni, David C. Spray, et al. 2020. Trypanosoma cruzi Promotes Transcriptomic Remodeling of the JAK/STAT Signaling and Cell Cycle Pathways in Myoblasts. Frontiers in Cellular and Infection Microbiology 10. Frontiers Media S.A.: 255. https://doi.org/10.3389/FCIMB.2020.00255/FULL.

Błyszczuk, Przemysław. 2019. Myocarditis in Humans and in Experimental Animal Models. Frontiers in Cardiovascular Medicine 6:1–17. https://doi.org/10.3389/fcvm.2019.00064.

Article  Google Scholar 

Borges, Cláudia Renata., Marlene Antônia Bibiano, Lúcio. dos Reis, Roberto Castellano, Edjane Souza Santos, Virmondes Rodrigues Junior, Denise Bertulucci Rocha. Rodrigues, Javier Emilio Lazo. Chica, Sanívia Aparecida, and de Lima Pereira. 2009. Papel do óxido nítrico no desenvolvimento de lesões cardíacas na fase aguda da infecção experimental pelo Trypanosoma cruzi. Revista da Sociedade Brasileira de Medicina Tropical 42:170–174. https://doi.org/10.1590/s0037-86822009000200015.

Article  PubMed  Google Scholar 

Wesley, Moisés, Aline Moraes, Ana de Cássia Rosa, Juliana Lott Carvalho, Tatiana Shiroma, Tamires Vital, Nayra Dias, et al. 2019. Correlation of parasite burden, kdna integration, autoreactive antibodies, and cytokine pattern in the pathophysiology of chagas disease. Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.01856.

Sanches, Tiago L.M.., Larissa D. Cunha, Grace K. Silva, Paulo M.M.. Guedes, João Santana. Silva, and Dario S. Zamboni. 2014. The use of a heterogeneously controlled mouse population reveals a significant correlation of acute phase parasitemia with mortality in Chagas disease. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0091640.

Article  CAS  Google Scholar 

Brener, Z. 1962. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Revista do Instituto de Medicina Tropical de São Paulo 4:389–396.

PubMed  CAS  Google Scholar 

Braga, Yarlla L.L., José R.C. Neto, Arthur W.F. Costa, Muriel V.T. Silva, Marcos V. Silva, Mara R.N. Celes, Milton A.P. Oliveira, et al. 2022. Interleukin-32 γ in the Control of Acute Experimental Chagas Disease. Journal of Immunology Research 2022. https://doi.org/10.1155/2022/7070301.

Zingales, B. 2009. S G Andrade, D A Campbell, E Chiari, O Fernandes, and F Guhl. A new consensus for Trypanosoma cruzi intraspecific nomenclature : Second revision meeting recommends TcI to TcVI 104:1051–1054.

CAS  Google Scholar 

Nisimura, Lindice M., Laura L. Coelho, Tatiana G. de Melo, Paloma de Carvalho, Pedro H. Vieira, Luciana R. Victorino, David C. Garzoni, Spray, et al. 2020. Trypanosoma cruzi Promotes Transcriptomic Remodeling of the JAK/STAT Signaling and Cell Cycle Pathways in Myoblasts. Frontiers in Cellular and Infection Microbiology 10:1–15. https://doi.org/10.3389/fcimb.2020.00255.

Article  CAS  Google Scholar 

Mata-Santos, Hilton Antônio, Camila Victória Sousa. Oliveira, Daniel F. Feijo, Daniel Figueiredo Vanzan, Glaucia Vilar-Pereira, Isalira P. Ramos, VitorCoutinho Carneiro, et al. 2024. Heart function enhancement by an Nrf2-activating antioxidant in acute Y-strain Chagas disease, but not in chronic Colombian or Y-strain. PLOS Neglected Tropical Diseases 18 : e0012612. https://doi.org/10.1371/JOURNAL.PNTD.0012612.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Reis Machado, Juliana, Marcos Vinícius Silva, Diego Costa Borges, Crislaine Aparecida Da Silva, Luis Eduardo Ramirez, Marlene Antônia Dos Reis, Lúcio Roberto Castellano, Virmondes Rodrigues, and Denise Bertulucci Rocha Rodrigues. 2014. Immunopathological aspects of experimental trypanosoma cruzi reinfections. BioMed Research International 2014. https://doi.org/10.1155/2014/648715.

Cardillo, Fabíola, Julio C. Voltarelli, Steven G. Reed, and João. S. Silva. 1996. Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: Role of NK cells. Infection and Immunity 64:128–134.

Article  PubMed  PubMed Central  CAS  Google Scholar 

de Araújo, Fernanda, Danielle Marquete Fortes, Andréa Teixeira-Carvalho. Vitelli-Avelar, Paulo Renato Zuquim. Antas, Juliana Assis Silva. Gomes, Renato Sathler-Avelar, ManoelOtávio Costa. Rocha, et al. 2011. Regulatory T cells phenotype in different clinical forms of chagas’ disease. PLoS Neglected Tropical Diseases 5:1–8. https://doi.org/10.1371/journal.pntd.0000992.

Article  CAS  Google Scholar 

Silva, Joao S., Daniel R. Twardzik, and Steven G. Reed. 1991. Regulation of Trypanosoma cruzi infections in vitro and in vivo by transforming growth factor beta (TGF-beta). The Journal of experimental medicine 174:539–545. https://doi.org/10.1084/jem.174.3.539.

Article  PubMed  CAS  Google Scholar 

Silva, Joao S. 1994. Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. Journal of Experimental Medicine 175:169–174. https://doi.org/10.1084/jem.175.1.169.

Article  Google Scholar 

Queiroga, TamyresBernadete Dantas, NathalieSena de Pereira, DenisDantas da Silva, CléberMesquita. de Andrade, RaimundoFernandesAraújo. de Júnior, CarlosRamonNascimento. do Brito, LúciaMariaCunha. da Galvão, AntôniaCláudiaJácome. da Câmara, ManuelaSalesLima. Nascimento, and PauloMarcosMatta. Guedes. 2021. Virulence of Trypanosoma cruzi Strains Is Related to the Differential Expression of Innate Immune Receptors in the Heart. Frontiers in Cellular and Infection Microbiology 11:1–14. https://doi.org/10.3389/fcimb.2021.696719.

Article  CAS 

Comments (0)

No login
gif