Acevedo-Rodriguez A, Kauffman AS, Cherrington BD, Borges CS, Roepke TA, Laconi M. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J Neuroendocrinol. 2018;30(10):e12590. https://doi.org/10.1111/jne.12590.
Article PubMed PubMed Central Google Scholar
Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress. 2017;20(5):476–94. https://doi.org/10.1080/10253890.2017.1369523.
Article PubMed PubMed Central Google Scholar
Koysombat K, Dhillo WS, Abbara A. Assessing hypothalamic pituitary gonadal function in reproductive disorders. Clin Sci (Lond). 2023;137(11):863–79. https://doi.org/10.1042/CS20220146.
Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411–26. https://doi.org/10.1093/humupd/dmv016.
Habbema JDF, Collins J, Leridon H, Evers JLH, Lunenfeld B, te Velde ER. Towards less confusing terminology in reproductive medicine: a proposal. Hum Reprod. 2004;19(7):1497–501. https://doi.org/10.1093/humrep/deh303.
Sharma RS, Saxena R, Singh R. Infertility & assisted reproduction: A historical & modern scientific perspective. Indian J Med Res. 2018;148(Suppl):S10–4. https://doi.org/10.4103/ijmr.IJMR_636_18.
Article PubMed PubMed Central Google Scholar
Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol. 2018;16(1):22. https://doi.org/10.1186/s12958-018-0336-z.
Article PubMed PubMed Central Google Scholar
Broughton DE, Moley KH. Obesity and female infertility: potential mediators of obesity’s impact. Fertil Steril. 2017;107(4):840–7. https://doi.org/10.1016/j.fertnstert.2017.01.017.
Craig JR, Jenkins TG, Carrell DT, Hotaling JM. Obesity, male infertility, and the sperm epigenome. Fertil Steril. 2017;107(4):848–59. https://doi.org/10.1016/j.fertnstert.2017.02.115.
Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism. 2019;92:108–20. https://doi.org/10.1016/j.metabol.2018.11.002.
Mili N, Paschou SA, Goulis DG, Dimopoulos M-A, Lambrinoudaki I, Psaltopoulou T. Obesity, metabolic syndrome, and cancer: pathophysiological and therapeutic associations. Endocrine. 2021;74(3):478–97. https://doi.org/10.1007/s12020-021-02884-x.
Ma RCW, Schmidt MI, Tam WH, McIntyre HD, Catalano PM. “Clinical management of pregnancy in the obese mother: before conception, during pregnancy, and post partum”, lancet. Diabetes Endocrinol. 2016;4(12):1037–49. https://doi.org/10.1016/S2213-8587(16)30278-9.
Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res. 2016;118(11):1786–807. https://doi.org/10.1161/CIRCRESAHA.115.306885.
Article PubMed PubMed Central Google Scholar
Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci. 2015;36(7):461–70. https://doi.org/10.1016/j.tips.2015.04.014.
Tersigni C, Di Nicuolo F, D’Ippolito S, Veglia M, Castellucci M, Di Simone N. Adipokines: new emerging roles in fertility and reproduction. Obstet Gynecol Surv. 2011;66(1):47–63. https://doi.org/10.1097/OGX.0b013e318217b0a4.
Campos DB, Palin M-F, Bordignon V, Murphy BD. The ‘beneficial’ adipokines in reproduction and fertility. Int J Obes (Lond). 2008;32(2):223–31. https://doi.org/10.1038/sj.ijo.0803719.
Dupont J, Pollet-Villard X, Reverchon M, Mellouk N, Levy R. Adipokines in human reproduction. Horm Mol Biol Clin Investig. 2015;24(1):11–24. https://doi.org/10.1515/hmbci-2015-0034.
Dawid M, et al. Adipokines in pregnancy. Adv Clin Chem. 2024;121:172–269. https://doi.org/10.1016/bs.acc.2024.04.006.
Nikanfar S, et al. Role of adipokines in the ovarian function: Oogenesis and steroidogenesis. J Steroid Biochem Mol Biol. 2021;209:105852. https://doi.org/10.1016/j.jsbmb.2021.105852.
Romere C, et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell. 2016;165(3):566–79. https://doi.org/10.1016/j.cell.2016.02.063.
Article PubMed PubMed Central Google Scholar
Yuan M, Li W, Zhu Y, Yu B, Wu J. Asprosin: A Novel Player in Metabolic Diseases. Front Endocrinol (Lausanne). 2020;11:64. https://doi.org/10.3389/fendo.2020.00064.
Farrag M, et al. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne). 2022;13:1101091. https://doi.org/10.3389/fendo.2022.1101091.
Kocaman N, Kuloğlu T. Expression of asprosin in rat hepatic, renal, heart, gastric, testicular and brain tissues and its changes in a streptozotocin-induced diabetes mellitus model. Tissue Cell. 2020;66:101397. https://doi.org/10.1016/j.tice.2020.101397.
Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol. 2019;486:96–104. https://doi.org/10.1016/j.mce.2019.03.001.
Jung TW, et al. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J Cell Physiol. 2019;234(11):20888–99. https://doi.org/10.1002/jcp.28694.
Yavuz A, et al. Betatrophin, elabela, asprosin, glucagon and subfatin peptides in breast tissue, blood and milk in gestational diabetes. Biotech Histochem Off Publ Biol Stain Comm. 2023;98(4):243–54. https://doi.org/10.1080/10520295.2023.2176546.
Morcos YAT, et al. Sensitive asprosin detection in clinical samples reveals serum/saliva correlation and indicates cartilage as source for serum asprosin. Sci Rep. 2022;12(1):1340. https://doi.org/10.1038/s41598-022-05060-x.
Article PubMed PubMed Central Google Scholar
Ugur K, Aydin S. Saliva and Blood Asprosin Hormone Concentration Associated with Obesity. Int J Endocrinol. 2019;2019:2521096. https://doi.org/10.1155/2019/2521096.
Article PubMed PubMed Central Google Scholar
Gozel N, Kilinc F. Investigation of plasma asprosin and saliva levels in newly diagnosed type 2 diabetes mellitus patients treated with metformin. Endokrynol Pol. 2021;72(1):37–43. https://doi.org/10.5603/EP.a2020.0059.
A. I. Mazur-Bialy, (2021) “Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature.,” Nutrients, vol. 13, no. 2. https://doi.org/10.3390/nu13020620.
Duerrschmid C, et al. Asprosin is a centrally acting orexigenic hormone. Nat Med. 2017;23(12):1444–53. https://doi.org/10.1038/nm.4432.
Article PubMed PubMed Central Google Scholar
Mishra I, et al. Protein tyrosine phosphatase receptor δ serves as the orexigenic asprosin receptor. Cell Metab. 2022;34(4):549-563.e8. https://doi.org/10.1016/j.cmet.2022.02.012.
Comments (0)