Pathophysiological insights into asprosin: an emerging adipokine in reproductive health

Acevedo-Rodriguez A, Kauffman AS, Cherrington BD, Borges CS, Roepke TA, Laconi M. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J Neuroendocrinol. 2018;30(10):e12590. https://doi.org/10.1111/jne.12590.

Article  PubMed  PubMed Central  Google Scholar 

Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress. 2017;20(5):476–94. https://doi.org/10.1080/10253890.2017.1369523.

Article  PubMed  PubMed Central  Google Scholar 

Koysombat K, Dhillo WS, Abbara A. Assessing hypothalamic pituitary gonadal function in reproductive disorders. Clin Sci (Lond). 2023;137(11):863–79. https://doi.org/10.1042/CS20220146.

Article  PubMed  Google Scholar 

Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411–26. https://doi.org/10.1093/humupd/dmv016.

Article  PubMed  Google Scholar 

Habbema JDF, Collins J, Leridon H, Evers JLH, Lunenfeld B, te Velde ER. Towards less confusing terminology in reproductive medicine: a proposal. Hum Reprod. 2004;19(7):1497–501. https://doi.org/10.1093/humrep/deh303.

Article  PubMed  Google Scholar 

Sharma RS, Saxena R, Singh R. Infertility & assisted reproduction: A historical & modern scientific perspective. Indian J Med Res. 2018;148(Suppl):S10–4. https://doi.org/10.4103/ijmr.IJMR_636_18.

Article  PubMed  PubMed Central  Google Scholar 

Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol. 2018;16(1):22. https://doi.org/10.1186/s12958-018-0336-z.

Article  PubMed  PubMed Central  Google Scholar 

Broughton DE, Moley KH. Obesity and female infertility: potential mediators of obesity’s impact. Fertil Steril. 2017;107(4):840–7. https://doi.org/10.1016/j.fertnstert.2017.01.017.

Article  PubMed  Google Scholar 

Craig JR, Jenkins TG, Carrell DT, Hotaling JM. Obesity, male infertility, and the sperm epigenome. Fertil Steril. 2017;107(4):848–59. https://doi.org/10.1016/j.fertnstert.2017.02.115.

Article  PubMed  Google Scholar 

Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism. 2019;92:108–20. https://doi.org/10.1016/j.metabol.2018.11.002.

Article  PubMed  Google Scholar 

Mili N, Paschou SA, Goulis DG, Dimopoulos M-A, Lambrinoudaki I, Psaltopoulou T. Obesity, metabolic syndrome, and cancer: pathophysiological and therapeutic associations. Endocrine. 2021;74(3):478–97. https://doi.org/10.1007/s12020-021-02884-x.

Article  PubMed  Google Scholar 

Ma RCW, Schmidt MI, Tam WH, McIntyre HD, Catalano PM. “Clinical management of pregnancy in the obese mother: before conception, during pregnancy, and post partum”, lancet. Diabetes Endocrinol. 2016;4(12):1037–49. https://doi.org/10.1016/S2213-8587(16)30278-9.

Article  Google Scholar 

Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res. 2016;118(11):1786–807. https://doi.org/10.1161/CIRCRESAHA.115.306885.

Article  PubMed  PubMed Central  Google Scholar 

Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci. 2015;36(7):461–70. https://doi.org/10.1016/j.tips.2015.04.014.

Article  PubMed  Google Scholar 

Tersigni C, Di Nicuolo F, D’Ippolito S, Veglia M, Castellucci M, Di Simone N. Adipokines: new emerging roles in fertility and reproduction. Obstet Gynecol Surv. 2011;66(1):47–63. https://doi.org/10.1097/OGX.0b013e318217b0a4.

Article  PubMed  Google Scholar 

Campos DB, Palin M-F, Bordignon V, Murphy BD. The ‘beneficial’ adipokines in reproduction and fertility. Int J Obes (Lond). 2008;32(2):223–31. https://doi.org/10.1038/sj.ijo.0803719.

Article  PubMed  Google Scholar 

Dupont J, Pollet-Villard X, Reverchon M, Mellouk N, Levy R. Adipokines in human reproduction. Horm Mol Biol Clin Investig. 2015;24(1):11–24. https://doi.org/10.1515/hmbci-2015-0034.

Article  PubMed  Google Scholar 

Dawid M, et al. Adipokines in pregnancy. Adv Clin Chem. 2024;121:172–269. https://doi.org/10.1016/bs.acc.2024.04.006.

Article  PubMed  Google Scholar 

Nikanfar S, et al. Role of adipokines in the ovarian function: Oogenesis and steroidogenesis. J Steroid Biochem Mol Biol. 2021;209:105852. https://doi.org/10.1016/j.jsbmb.2021.105852.

Article  PubMed  Google Scholar 

Romere C, et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell. 2016;165(3):566–79. https://doi.org/10.1016/j.cell.2016.02.063.

Article  PubMed  PubMed Central  Google Scholar 

Yuan M, Li W, Zhu Y, Yu B, Wu J. Asprosin: A Novel Player in Metabolic Diseases. Front Endocrinol (Lausanne). 2020;11:64. https://doi.org/10.3389/fendo.2020.00064.

Article  PubMed  Google Scholar 

Farrag M, et al. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne). 2022;13:1101091. https://doi.org/10.3389/fendo.2022.1101091.

Article  PubMed  Google Scholar 

Kocaman N, Kuloğlu T. Expression of asprosin in rat hepatic, renal, heart, gastric, testicular and brain tissues and its changes in a streptozotocin-induced diabetes mellitus model. Tissue Cell. 2020;66:101397. https://doi.org/10.1016/j.tice.2020.101397.

Article  PubMed  Google Scholar 

Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol. 2019;486:96–104. https://doi.org/10.1016/j.mce.2019.03.001.

Article  PubMed  Google Scholar 

Jung TW, et al. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J Cell Physiol. 2019;234(11):20888–99. https://doi.org/10.1002/jcp.28694.

Article  PubMed  Google Scholar 

Yavuz A, et al. Betatrophin, elabela, asprosin, glucagon and subfatin peptides in breast tissue, blood and milk in gestational diabetes. Biotech Histochem Off Publ Biol Stain Comm. 2023;98(4):243–54. https://doi.org/10.1080/10520295.2023.2176546.

Article  Google Scholar 

Morcos YAT, et al. Sensitive asprosin detection in clinical samples reveals serum/saliva correlation and indicates cartilage as source for serum asprosin. Sci Rep. 2022;12(1):1340. https://doi.org/10.1038/s41598-022-05060-x.

Article  PubMed  PubMed Central  Google Scholar 

Ugur K, Aydin S. Saliva and Blood Asprosin Hormone Concentration Associated with Obesity. Int J Endocrinol. 2019;2019:2521096. https://doi.org/10.1155/2019/2521096.

Article  PubMed  PubMed Central  Google Scholar 

Gozel N, Kilinc F. Investigation of plasma asprosin and saliva levels in newly diagnosed type 2 diabetes mellitus patients treated with metformin. Endokrynol Pol. 2021;72(1):37–43. https://doi.org/10.5603/EP.a2020.0059.

Article  PubMed  Google Scholar 

A. I. Mazur-Bialy, (2021) “Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature.,” Nutrients, vol. 13, no. 2. https://doi.org/10.3390/nu13020620.

Duerrschmid C, et al. Asprosin is a centrally acting orexigenic hormone. Nat Med. 2017;23(12):1444–53. https://doi.org/10.1038/nm.4432.

Article  PubMed  PubMed Central  Google Scholar 

Mishra I, et al. Protein tyrosine phosphatase receptor δ serves as the orexigenic asprosin receptor. Cell Metab. 2022;34(4):549-563.e8. https://doi.org/10.1016/j.cmet.2022.02.012.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif