Mocumbi A, Humbert M, Saxena A, Jing ZC, Sliwa K, Thienemann F, Archer SL, Stewart S (2024) Pulmonary hypertension. Nat Rev Dis Primers 10:1. https://doi.org/10.1038/s41572-023-00486-7
Ruopp NF, Cockrill BA (2022) Diagnosis and treatment of pulmonary arterial hypertension: a review. JAMA 327:1379–1391. https://doi.org/10.1001/jama.2022.4402
Article CAS PubMed Google Scholar
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S, ESC/ERS Scientific Document Group (2023) 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 61:2200879. https://doi.org/10.1183/13993003.00879-2022
Humbert M, Sitbon O, Guignabert C, Savale L, Boucly A, Gallant-Dewavrin M, McLaughlin V, Hoeper MM, Weatherald J (2023) Treatment of pulmonary arterial hypertension: recent progress and a look to the future. Lancet Respir Med 11:804–819. https://doi.org/10.1016/S2213-2600(23)00264-3
Khou V, Anderson JJ, Strange G, Corrigan C, Collins N, Celermajer DS, Dwyer N, Feenstra J, Horrigan M, Keating D, Kotlyar E, Lavender M, McWilliams TJ, Steele P, Weintraub R, Whitford H, Whyte K, Williams TJ, Wrobel JP, Keogh A, Lau EM (2020) Diagnostic delay in pulmonary arterial hypertension: Insights from the Australian and New Zealand pulmonary hypertension registry. Respirology 25:863–871. https://doi.org/10.1111/resp.13768
He X, Dou L, Wang J, Xia L, Miao J, Yan Y (2024) Nobiletin regulates the proliferation and migration of ovarian cancer A2780 cells via DPP4 and TXNIP. Naunyn Schmiedebergs Arch Pharmacol 398:1483–1495. https://doi.org/10.1007/s00210-024-03334-x
Article CAS PubMed Google Scholar
Yin Q, Wang S, Yang J, Fan C, Yu Y, Li J, Mei F, Zhang S, Xi R, Zhang X (2023) Nobiletin attenuates monocrotaline-induced pulmonary arterial hypertension through PI3K/Akt/STAT3 pathway. J Pharm Pharmacol 75:1100–1110. https://doi.org/10.1093/jpp/rgad045
Article CAS PubMed Google Scholar
Wang HH, Sun YN, Qu TQ, Sang XQ, Zhou LM, Li YX, Ren FZ (2022) Nobiletin prevents D-Galactose-Induced C2C12 cell aging by improving mitochondrial function. Int J Mol Sci 23:11963. https://doi.org/10.3390/ijms231911963
Article CAS PubMed PubMed Central Google Scholar
Nakajima A, Ohizumi Y (2019) Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s Disease and Parkinson’s Disease. Int J Mol Sci 20:3380. https://doi.org/10.3390/ijms20143380
Article CAS PubMed PubMed Central Google Scholar
Huang Q, Tian L, Zhang Y, Qiu Z, Lei S, Xia ZY (2023) Nobiletin alleviates myocardial ischemia-reperfusion injury via ferroptosis in rats with type-2 diabetes mellitus. Biomed Pharmacother 163:114795. https://doi.org/10.1016/j.biopha.2023.114795
Article CAS PubMed Google Scholar
Chen H, Xie W, Peng Z, Liu Y, Li H, Huang W (2024) Nobiletin ameliorates heatstroke-induced acute lung injury by inhibiting ferroptosis via p53/slc7a11 pathway. Shock 61:105–111. https://doi.org/10.1097/SHK.0000000000002224
Article CAS PubMed Google Scholar
Zeng X, Zhu L, Xiao R, Liu B, Sun M, Liu F, Hao Q, Lu Y, Zhang J, Li J, Wang T, Wei X, Hu Q (2017) Hypoxia-induced mitogenic factor acts as a nonclassical ligand of calcium-sensing receptor, therapeutically exploitable for intermittent hypoxia-induced pulmonary hypertension. Hypertension 69:844–854. https://doi.org/10.1161/HYPERTENSIONAHA.116.08743
Article CAS PubMed Google Scholar
Tan R, Li J, Liu F, Liao P, Ruiz M, Dupuis J, Zhu L, Hu Q (2020) Phenylalanine induces pulmonary hypertension through calcium-sensing receptor activation. Am J Physiol Lung Cell Mol Physiol 319:L1010–L1020. https://doi.org/10.1152/ajplung.00215.2020
Article CAS PubMed Google Scholar
Kovacs L, Cao Y, Han W, Meadows L, Kovacs-Kasa A, Kondrikov D, Verin AD, Barman SA, Dong Z, Huo Y, Su Y (2019) PFKFB3 in smooth muscle promotes vascular remodeling in pulmonary arterial hypertension. Am J Respir Crit Care Med 200:617–627. https://doi.org/10.1164/rccm.201812-2290OC
Article CAS PubMed PubMed Central Google Scholar
Abid S, Marcos E, Parpaleix A, Amsellem V, Breau M, Houssaini A, Vienney N, Lefevre M, Derumeaux G, Evans S, Hubeau C, Delcroix M, Quarck R, Adnot S, Lipskaia L (2019) CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension. Eur Respir J 54:1802308. https://doi.org/10.1164/rccm.201812-2290OC
Yuan K, Shamskhou EA, Orcholski ME, Nathan A, Reddy S, Honda H, Mani V, Zeng Y, Ozen MO, Wang L, Demirci U, Tian W, Nicolls MR, de Jesus Perez VA (2019) Loss of endothelium-derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension. Circulation 139:1710–1724. https://doi.org/10.1161/CIRCULATIONAHA.118.037642
Article CAS PubMed PubMed Central Google Scholar
Zhao C, Le X, Li M, Hu Y, Li X, Chen Z, Hu G, Hu L, Li Q (2023) Inhibition of Hsp110-STAT3 interaction in endothelial cells alleviates vascular remodeling in hypoxic pulmonary arterial Hypertension model. Respir Res 24:289. https://doi.org/10.1186/s12931-023-02600-5
Article CAS PubMed PubMed Central Google Scholar
Hu Y, Chi L, Kuebler WM, Goldenberg NM (2020) Perivascular inflammation in pulmonary arterial hypertension. Cells 9:2338. https://doi.org/10.3390/cells9112338
Article CAS PubMed PubMed Central Google Scholar
Feng W, Wang J, Yan X, Zhang Q, Chai L, Wang Q, Shi W, Chen Y, Liu J, Qu Z, Li S, Xie X, Li M (2021) ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif 54:e13048. https://doi.org/10.1111/cpr.13048
Article CAS PubMed PubMed Central Google Scholar
Culley MK, Chan SY (2022) Endothelial senescence: a new age in pulmonary hypertension. Circ Res 130:928–941. https://doi.org/10.1161/CIRCRESAHA.121.319815
Article CAS PubMed PubMed Central Google Scholar
Hong J, Arneson D, Umar S, Ruffenach G, Cunningham CM, Ahn IS, Diamante G, Bhetraratana M, Park JF, Said E, Huynh C, Le T, Medzikovic L, Humbert M, Soubrier F, Montani D, Girerd B, Trégouët DA, Channick R, Saggar R, Eghbali M, Yang X (2021) Single-cell study of two rat models of pulmonary arterial hypertension reveals connections to human pathobiology and drug repositioning. Am J Respir Crit Care Med 203:1006–1022. https://doi.org/10.1164/rccm.202006-2169OC
Article CAS PubMed PubMed Central Google Scholar
Park JF, Clark VR, Banerjee S, Hong J, Razee A, Williams T, Fishbein G, Saddic L, Umar S (2021) Transcriptomic analysis of right ventricular remodeling in two rat models of pulmonary hypertension: identification and validation of epithelial-to-mesenchymal transition in human right ventricular failure. Circ Heart Fail 14:e007058. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007058
Article CAS PubMed PubMed Central Google Scholar
Boucherat O, Agrawal V, Lawrie A, Bonnet S (2022) The latest in animal models of pulmonary hypertension and right ventricular failure. Circ Res 130:1466–1486. https://doi.org/10.1161/CIRCRESAHA.121.319971
Article PubMed PubMed Central Google Scholar
Chu H, Qin Z, Ma J, Xie Y, Shi H, Gu J, Shi B (2022) Calcium-sensing receptor (CaSR)-mediated intracellular communication in cardiovascular diseases. Cells 11:3075. https://doi.org/10.3390/cells11193075
Article CAS PubMed PubMed Central Google Scholar
Sun J, Murphy E (2010) Calcium-sensing receptor: a sensor and mediator of ischemic preconditioning in the heart. Am J Physiol Heart Circ Physiol 299:H1309–H1326. https://doi.org/10.1152/ajpheart.00373.2010
Comments (0)