Apoptosis-inducing activity of a steroidal glycoside from G. Don. bulbs in human small-cell lung cancer cells via mitochondrial dysfunction and ER stress

Yu HY, Liu F, Li LQ, Jin MY, Yu X, Liu X, Li Y, Li L, Yan JK (2024) Recent advances in dietary polysaccharides from Allium species: preparation, characterization, and bioactivity. Int J Biol Macromol 277:e134130

Google Scholar 

Yan JK, Zhu J, Liu Y, Chen X, Wang W, Zhang H, Li L (2022) Recent advances in research on Allium plants: functional ingredients, physiological activities, and applications in agricultural and food sciences. Crit Rev Food Sci Nutr 63:8107–8135

PubMed  Google Scholar 

Kawashima K, Mimaki Y, Sashida Y (1991) Steroidal saponins from Allium giganteum and A. aflatunense. Phytochemistry 30:3063–3067

CAS  Google Scholar 

Mimaki Y, Kuroda M, Sashida Y (1999) Steroidal saponins from the bulbs of Allium aflatunense. Nat Med 53:88–93

CAS  Google Scholar 

Mimaki Y, Kawashima K, Kanmoto T, Sashida Y (1993) Steroidal glycosides from Allium albopilosum and A. ostrowskianum. Phytochemistry 34:799–805

CAS  PubMed  Google Scholar 

Mimaki Y, Kuroda M, Sashida Y (1999) Steroidal saponins from the bulbs of Allium ampeloprasum. Nat Med 53:134–137

CAS  Google Scholar 

Shimazaki T, Iguchi T, Kanda A, Yamamoto K, Takahashi N, Mimaki Y (2023) Six unprecedented steroidal glycosides from Allium atropurpureum bulbs and their cytotoxicities against SBC-3 human small-cell lung cancer cells. Phytochem Lett 57:200–209

CAS  Google Scholar 

Shimazaki T, Iguchi T, Takahashi Y, Yamamoto K, Takahashi N, Mimaki Y (2023) Determination of structure and cytotoxicity of ten undescribed steroidal glycosides from Allium cristophii x A. macleanii ‘Globemaster.’ Molecules 28:e6248

Google Scholar 

Sashida Y, Kawashima K, Mimaki Y (1991) Novel polyhydroxylated steroidal saponins from Allium giganteum. Chem Pharm Bull 39:698–703

CAS  Google Scholar 

Mimaki Y, Nikaido T, Matsumoto K, Sashida Y, Ohmoto T (1994) New steroidal saponins from the bulbs of Allium giganteum exhibiting potent inhibition of cAMP phosphodiesterase activity. Chem Pharm Bull 42:710–714

CAS  Google Scholar 

Mimaki Y, Kuroda M, Fukasawa T, Sashida Y (1999) Steroidal glycosides from the bulbs of Allium jesdianum. J Nat Med 62:194–197

CAS  Google Scholar 

Mimaki Y, Kuroda M, Fukasawa T, Sashida Y (1999) Steroidal saponins from the bulbs of Allium karataviense. Chem Pharm Bull 47:738–743

CAS  Google Scholar 

Kuroda M, Ori K, Takayama H, Sakagami H, Mimaki Y (2015) Karataviosides G-K, five new bisdesmosidic steroidal glycosides from the bulbs of Allium karataviense. Steroids 93:96–104

CAS  PubMed  Google Scholar 

Inoue T, Mimaki Y, Sashida Y, Nishino A, Satomi Y, Nishino H (1995) Steroidal glycosides from Allium macleanii and A. senescens, and their inhibitory activity on tumour promoter-induced phospholipid metabolism of HeLa cells. Phytochemistry 40:521–525

CAS  PubMed  Google Scholar 

Mimaki Y, Satou T, Ohmura M, Sashida Y (1996) Steroidal saponins from the bulbs of Allium narcissiflorum. Nat Med 50:308

CAS  Google Scholar 

Kawashima K, Mimaki Y, Sashida Y (1991) Schubertosides A-D, new (22S)-hydroxycholestane glycosides from Allium schubertii. Chem Pharm Bull 39:2761–2763

CAS  Google Scholar 

Kawashima K, Mimaki Y, Sashida Y (1993) Steroidal saponins from the bulbs of Allium schubertii. Phytochemistry 32:1267–1272

CAS  PubMed  Google Scholar 

Mimaki Y, Satou T, Kuroda M, Kameyama A, Sashida Y, Li HY, Harada N (1996) A new furostanol saponin with six sugars from the bulbs of Allium sphaerosephalon structural elucidation by modern NMR techniques. Chem Lett 6:431–432

Google Scholar 

Baba M, Ohmura M, Kishi N, Okada Y, Shibata S, Peng J, Yao SS, Nishino H, Okuyama T (2000) Saponins isolated from Allium chinense G. Don and antitumor-promoting activities of isoliquiritigenin and laxogenin from the same drug. Biol Pharm Bull 23:660–662

CAS  PubMed  Google Scholar 

Li X, Yan S, Lu J, Wang R, Ma X, Xiao X, Zhang Y, Jin H (2023) Two new phenolic amides from Allium chinense. Chin Herb Med 15:603–606

PubMed  PubMed Central  Google Scholar 

Yu Z, Zhang T, Zhou F, Xiao X, Ding X, He H, Rang J, Quan M, Wang T, Zuo M, Xia L (2015) Anticancer activity of saponins from Allium chinense against the B16 melanoma and 4T1 breast carcinoma cell. Evid Based Complement Alternat Med 2015:1–12

Google Scholar 

Veronika P, Dorothea PM, Clemens A, Joachim W, Kristiina B, Zsolt M, Balazs D (2025) Prophylactic cranial irradiation for small cell lung cancer in the era of immunotherapy and molecular subtypes. Curr Opin Oncol 37:27–34

Google Scholar 

Bertaglia V, Petrelli F, Dottorini L, Carnio S, Morelli AM, Nepote A, Maccioni A, Scartozzi M, Solinas C, Novello S (2025) Chemotherapy plus immunotherapy as first line combination in order patients with extensive stage small cell lung cancer: a systematic review and meta-analysis. Semin Oncol 52:14–18

CAS  PubMed  Google Scholar 

Qiang M, Liu H, Yang L, Wang H, Guo R (2024) Immunotherapy for small cell lung cancer: the current state and future trajectories. Discov Oncol 15:e355

Google Scholar 

Matsuura H, Ushiroguchi T, Itakura Y, Fuwa T (1989) A furostanol glycoside from Allium chinense G. Don Chem Pharm Bull 37:1390–1391

CAS  Google Scholar 

Kuroda M, Mimaki Y, Kameyama A, Sashida Y, Nikaido T (1995) Steroidal saponins from Allium chinense and their inhibitory activities on cyclic AMP phosphodiesterase and Na+/K+ ATPase. Phytochemistry 40:1071–1076

CAS  PubMed  Google Scholar 

Kubo S, Mimaki Y, Sashida Y, Nikaido T, Ohmoto T (1992) Steroidal saponins from the rhizomes of Smilax sieboldii. Phytochemistry 31:2445–2450

CAS  PubMed  Google Scholar 

Skhirtladze AV, Benidze MN, Kemertelidze EP, Grigolava BL, Sturm S, Ganzera M (2015) Steroid composition of fruit from Yucca gloriosa introduced into Georgia. Chem Nat Comp 51:283–288

CAS  Google Scholar 

Su L, Chen G, Feng SG, Wang W, Li ZF, Chen H, Liu YX, Pei YH (2009) Steroidal saponins from Tribulus terrestris. Steroids 74:399–403

CAS  PubMed  Google Scholar 

Koopman G, Reutelingsperger CPM, Kuijten GAM, Keehnen RMJ, Pals ST, van Oers MHJ (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

CAS  PubMed  Google Scholar 

Eeva J, Nuutinen U, Ropponen A, Mättö M, Eray M, Pellinen R, Wahlfors J, Pelkonen J (2009) The involvement of mitochondrial and the capase-9 activation pathway in rituximab-induced apoptosis in FL cells. Apoptosis 14:687–698

CAS  PubMed  Google Scholar 

Fleury C, Mignotte B, Vayssière JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141

CAS  PubMed  Google Scholar 

Conza GD, Ho PC (2020) ER stress response: an emerging modulator for innate immunity. Cells 9:e695

Google Scholar 

Liu J, Ren LJ, Wang HW, Li Z (2023) Isoquercitrin induces endoplasmic reticulum stress and immunogenic cell death in gastric cancer cells. Biochem Genet 61:1128–1142

CAS  PubMed  Google Scholar 

Chen P, Zhang X, Fang Q, Zhao Z, Lin C, Zhou Y, Liu F, Zhu C, Wu A (2024) Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy in vitro and in vino. J Nat Med 78:677–692

CAS  PubMed  Google Scholar 

Peng SY, Tang JY, Lan TH, Shiau JP, Chen KL, Jeng JH, Yen CY, Chang HW (2023) Oxidative-stress-mediated ER stress is involved in Regulating manoalide-induced antiproliferation in oral cancer cells. Int J Mol Sci 24:e3987

Google Scholar 

Ge G, Yan Y, Cai H (2017) Ginsenoside Rh2 inhibited proliferation by inducing ROS mediated ER stress dependent apoptosis in lung cancer cells. Biol Pharm Bull 40:2117–2124

CAS  PubMed  Google Scholar 

Wang YY, Lee KT, Lim MC, Choi JH (2020) TRPV1 antagonist DWP05195 induces ER stress-dependent apoptosis through the ROS-p38-CHOP pathway in human ovarian cancer cells. Cancers 12:e1702

Google Scholar 

Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

CAS  PubMed  Google Scholar 

Bezu L, Sauvat A, Humeau J, Leduc M, Kepp O, Kroemer G (2018) eIF2α phosphorylation: a hallmark of immunogenic cell death. Oncoimmunology 7:e1431089

PubMed  PubMed Central  Google Scholar 

Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cell through trans-activation of LRP on the phagocyte. Cell 123:321–334

CAS  PubMed  Google Scholar 

Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N, Kroemer G (2010) Immunogenic tumor cell death for optimal anticancer therapy: The calreticulin exposure pathway. Clin Cancer Res 16:3100–3104

CAS  PubMed  Google Scholar 

Ahmed A, Tait SWG (2020) Targeting immunogenic cell death in cancer. Mol Oncol 14:2994–3006

CAS  PubMed  PubMed Central  Google Scholar 

Abd

Comments (0)

No login
gif