Ameliorative role of leaf extract in aluminum chloride-induced neurotoxicity flies possibly mediated by -methyl--aspartate receptor antagonistic and anticholinesterase active compounds

Dordevic D, Buchtova H, Jancikova S, Macharackova B, Jarosova M, Vitez T, Kushkevych I (2019) Aluminum contamination of food during culinary preparation: case study with aluminum foil and consumers’ preferences. Food Sci Nutr 7:3349–3360. https://doi.org/10.1002/fsn3.1204

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skalny AV, Aschner M, Jiang Y, Gluhcheva YG, Tizabi Y, Lobinski R, Tinkov AA (2021) Chapter one—molecular mechanisms of aluminum neurotoxicity: update on adverse effects and therapeutic strategies. In: Aschner M, Costa LG (eds) Advances in neurotoxicology. Academic Press, pp 1–34

Google Scholar 

Pamphlett R, Buckland ME, Bishop DP (2023) Potentially toxic elements in the brains of people with multiple sclerosis. Sci Rep 13:655. https://doi.org/10.1038/s41598-022-27169-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mold M, Umar D, King A, Exley C (2018) Aluminium in brain tissue in autism. J Trace Elem Med Biol 46:76–82. https://doi.org/10.1016/j.jtemb.2017.11.012

Article  CAS  PubMed  Google Scholar 

Kumar A, Sidhu J, Lui F, Tsao JW (2024) Alzheimer disease. StatPearls Publishing, Treasure Island

Google Scholar 

Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 25:5789. https://doi.org/10.3390/molecules25245789

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prüßing K, Voigt A, Schulz JB (2013) Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener 8:35. https://doi.org/10.1186/1750-1326-8-35

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu M, Li Y, Miao Y, Qiao H, Wang Y (2023) Exploring the efficient natural products for Alzheimer’s disease therapy via Drosophila melanogaster (fruit fly) models. J Drug Target 31:817–831. https://doi.org/10.1080/1061186X.2023.2245582

Article  CAS  PubMed  Google Scholar 

Mohamed SM, Shalaby MA, Al-Mokaddem AK, El-Banna AH, El-Banna HA, Nabil G (2023) Evaluation of anti-Alzheimer activity of Echinacea purpurea extracts in aluminum chloride-induced neurotoxicity in rat model. J Chem Neuroanat 128:102234. https://doi.org/10.1016/j.jchemneu.2023.102234

Article  CAS  PubMed  Google Scholar 

Oyeniran OH, Courage FD, Ademiluyi AO, Oboh G (2024) Sweet basil (Ocimum basilicum) leaf and seed extracts alleviate neuronal dysfunction in aluminum chloride-induced neurotoxicity in Drosophila melanogaster Meigen model. Drug Chem Toxicol 47:949–959. https://doi.org/10.1080/01480545.2024.2317828

Article  CAS  PubMed  Google Scholar 

Saliu JA, Olajuyin AM, Monday OO (2024) Sercocephalous latifolius fruit attenuates aluminum chloride-induced oxidative stress and neurotoxicity in Drosophila melanogaster via Drn1 regulation of the IMD signaling pathway. P Pharmacol Res Mod Chin Med 11:100437. https://doi.org/10.1016/j.prmcm.2024.100437

Article  Google Scholar 

Phan DAT, Tran HT, Le HP, Khuong TH, Ha HT, Nguyen DT, Nguyen GT, Le MV, Ly TH (2024) Exploring the therapeutic potential of Camellia longii Orel & Luu leaf extracts for memory loss in Alzheimer’s disease: Novel findings and functional food applications. ACS Omega 9:29651–29665. https://doi.org/10.1021/acsomega.4c02980

Article  CAS  Google Scholar 

Vo DH, Yamamura S, Ohtani K, Kasai R, Yamasaki K, Nguyen TN, Hoang MC (1998) Oleanane saponins from Polyscias fruticosa. Phytochemistry 47:451–457. https://doi.org/10.1016/s0031-9422(97)00618-3

Article  CAS  PubMed  Google Scholar 

Do TL (2004) Vietnamese medicinal plants and remedies. Medicine Publisher, Hanoi, pp 828–830

Google Scholar 

Selvaraj B, Le TT, Kim DW, Jung BH, Yoo KY, Ahn HR, Thuong PT, Tran TTT, Pae AN, Jung SH, Lee JW (2023) Neuroprotective effects of ethanol extract of Polyscias fruticosa (EEPF) against Glutamate-mediated neuronal toxicity in HT22 cells. Int J Mol Sci 24:39696. https://doi.org/10.3390/ijms24043969

Article  CAS  Google Scholar 

Vo VC (1997) Dictionary of Vietnamese medicinal plants. Publishing House Medicine, Ho Chi Minh City, p 1249

Google Scholar 

Ashmawy NS, Gad HA, Ashour ML, El-Ahmady SH, Singab ANB (2020) The genus Polyscias (Araliaceae): a phytochemical and biological review. J Herb Med 23:100377. https://doi.org/10.1016/j.hermed.2020.100377

Article  Google Scholar 

Ly HT, Nguyen TTH, Le VM, Lam BT, Mai TTT, Dang TPT (2022) Therapeutic potential of Polyscias fruticosa (L) Harms leaf extract for Parkinson’s disease treatment by Drosophila melanogaster model. Oxid Med Cell Longev 2022:5262677. https://doi.org/10.1155/2022/5262677

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen T, Matsumoto K, Watanabe H (2006) Protective effect of Polyscias fruticosa leaves on social isolation stress-induced brain tissue damage. In: Proceeding of The Fourth Indochina Conference on Pharmaceutical Science (Pharma Indo China IV), pp. 359–362.

Nguyen TTH, Luong KB (2001) Research on anti-depressant and anti-stress effects of Polyscias fruticosa. J Med Mater 6:84–86

Google Scholar 

Nguyen TTH, Tran TMX (2008) Memory-improving effect of alcohol extract from Dinh lang leaves (Polyscias fruticosa L. Harms, Araliaceae). Ho Chi Minh City J Med 12:170–175

Google Scholar 

Nguyen MP (2020) Impact of roasting to total phenolic, flavonoid and antioxidant activities in root, bark and leaf of Polyscias fruticosa. J Pharm Res Int 32:13–17

Google Scholar 

Nguyen TTH, Nguyen TAN (2004) Study on hepatoprotective effects of Dinh Lang based on the mechanism of antioxidant effect. J Med Mater 9:85–89

Google Scholar 

Adedayo BC, Ogunsuyi OB, Akinniyi ST, Oboh G (2022) Effect of Andrographis paniculata and Phyllanthus amarus leaf extracts on selected biochemical indices in Drosophila melanogaster model of neurotoxicity. Drug Chem Toxicol 45:407–416. https://doi.org/10.1080/01480545.2019.1708377

Article  CAS  PubMed  Google Scholar 

El Kholy S, Al Naggar Y (2023) Exposure to polystyrene microplastic beads causes sex-specific toxic effects in the model insect Drosophila melanogaster. Sci Rep 13:204. https://doi.org/10.1038/s41598-022-27284-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerber BBR, Thum J (2013) Odor-taste learning assays in Drosophila larvae. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot071639

Article  PubMed  Google Scholar 

Versace E, Reisenberger J (2015) Large-scale assessment of olfactory preferences and learning in Drosophila melanogaster: behavioral and genetic components. PeerJ 3:e1214. https://doi.org/10.7717/peerj.1214

Article  PubMed  PubMed Central  Google Scholar 

Raj A, Shah P, Agrawal N (2017) Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Sci Rep 7:15617. https://doi.org/10.1038/s41598-017-15645-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

OECD (2002) Test no. 423: acute oral toxicity—acute toxic class method, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. https://doi.org/10.1787/9789264071001-en

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

Article  CAS  PubMed  Google Scholar 

Ropp PJ, Spiegel JO, Walker JL, Green H, Morales GA, Milliken KA, Ringe JJ, Durrant JD (2019) Gypsum-DL: an open-source program for preparing small-molecule libraries for structure-based virtual screening. J Cheminform 11:34. https://doi.org/10.1186/s13321-019-0358-3

Article  PubMed  PubMed Central  Google Scholar 

Guedes IA, Barreto AMS, Marinho D, Krempser E, Kuenemann MA, Sperandio O, Dardenne LE, Miteva MA (2021) New machine learning and physics-based scoring functions for drug discovery. Sci Rep 11:3198. https://doi.org/10.1038/s41598-021-82410-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu L, Shi S, Yi J, Wang N, He Y, Wu Z, Peng J, Deng Y, Wang W, Wu C, Lyu A, Zeng X, Zhao W, Hou T, Cao D (2024) ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res 52:W422–W431. https://doi.org/10.1093/nar/gkae236

Article  PubMed  PubMed Central  Google Scholar 

Banerjee P, Kemmler E, Dunkel M, Preissner R (2024) ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 52:W513–W520.

Comments (0)

No login
gif