Traditional medicine meets modern science: Halofuginone’s role in combating autoimmune diseases

Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129

Article  CAS  PubMed  Google Scholar 

Chou TQ, Fu FY, Kao YS (1948) Antimalarial constituents of Chinese drug, Ch’ang Shan, Dichroa Febrifuga Lour. J Am Chem Soc 70(5):1765–1767

Article  CAS  PubMed  Google Scholar 

Shizhen L (2003) Compendium of materia medica (Bencao gangmu). Foreign Languages Press, Beijing

Google Scholar 

Jang CS, Fu FY et al (1946) Ch’ang Shan, a Chinese antimalarial drug. Science 103(2663):59

Article  CAS  PubMed  Google Scholar 

Jang CS, Fu FY et al (1948) Pharmacology of ch’ang shan (Dichroa febrifuga) a Chinese antimalarial herb. Nature 161(4089):400

Article  CAS  PubMed  Google Scholar 

Henderson FG, Rose CL et al (1949) gamma-Dichroine, the antimalarial alkaloid of Ch’ang Shan. J Pharmacol Exp Ther 95(2):191–200

Article  CAS  PubMed  Google Scholar 

Kikuchi H, Yamamoto K, Horoiwa S, Hirai S, Kasahara R, Hariguchi N, Matsumoto M, Oshima Y (2006) Exploration of a new type of antimalarial compounds based on febrifugine. J Med Chem 49(15):4698–4706

Article  CAS  PubMed  Google Scholar 

Zhang J, Yao Q, Liu Z (2017) A novel synthesis of the efficient anti-coccidial drug Halofuginone hydrobromide. Molecules 22(7):1086

Article  PubMed  PubMed Central  Google Scholar 

McLaughlin NP, Evans P, Pines M (2014) The chemistry and biology of febrifugine and Halofuginone. Bioorg Med Chem 22(7):1993–2004

Article  CAS  PubMed  Google Scholar 

McQuistion TE, McDougald LR (1981) Anticoccidial activity of arprinocid and Halofuginone. Vet Parasitol 9(1):27–33

Article  CAS  PubMed  Google Scholar 

McLoon LK (2008) Focusing on fibrosis: Halofuginone-induced functional improvement in the mdx mouse model of Duchenne muscular dystrophy. Am J Physiol Heart Circ Physiol 294(4):H1505-1507

Article  CAS  PubMed  Google Scholar 

Mordechay S, Smullen S, Evans P, Genin O, Pines M, Halevy O (2021) Differential effects of Halofuginone enantiomers on muscle fibrosis and histopathology in Duchenne muscular dystrophy. Int J Mol Sci 22(13):7063

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marty P, Chatelain B, Lihoreau T, Tissot M, Dirand Z, Humbert P, Senez C, Secomandi E, Isidoro C, Rolin G (2021) Halofuginone regulates keloid fibroblast fibrotic response to TGF-β induction. Biomed Pharmacother 135:111182

Article  CAS  PubMed  Google Scholar 

Mi L, Zhang Y, Su A, Tang M, Xing Z, He T, Wu W, Li Z (2022) Halofuginone for cancer treatment: a systematic review of efficacy and molecular mechanisms. J Funct Foods 98:105237

Article  CAS  Google Scholar 

Han Y, Liu S, Zhu J, Liu P, Meng Z, Li Y, Li S, Fan F, Zhang M, Liu H (2025) Experimental study on the inhibitory effect of Halofuginone on NSCLC. Eur J Pharmacol 988:177221

Article  CAS  PubMed  Google Scholar 

de Jonge MJ, Dumez H, Verweij J, Yarkoni S, Snyder D, Lacombe D, Marréaud S, Yamaguchi T, Punt CJ, van Oosterom A (2006) Phase I and pharmacokinetic study of Halofuginone, an oral quinazolinone derivative in patients with advanced solid tumours. Eur J Cancer 42(12):1768–1774

Article  PubMed  Google Scholar 

Koon HB, Fingleton B, Lee JY, Geyer JT, Cesarman E, Parise RA, Egorin MJ, Dezube BJ, Aboulafia D, Krown SE (2011) Phase II AIDS Malignancy Consortium trial of topical Halofuginone in AIDS-related Kaposi sarcoma. J Acquir Immune Defic Syndr 56(1):64–68

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomazini BM, Tramujas L, Medrado FAJ, Gomes S, Negrelli KL, Murinize GS, Santos RHN, Vianna BMP, Piotto BF, Veiga TS et al (2024) Halofuginone for non-hospitalized adult patients with COVID-19 a multicenter, randomized placebo-controlled phase 2 trial. The HALOS Trial PLoS One 19(2):e0299197

Article  CAS  PubMed  Google Scholar 

Sandoval DR, Clausen TM, Nora C, Cribbs AP, Denardo A, Clark AE, Garretson AF, Coker JKC, Narayanan A, Majowicz SA et al (2021) The Prolyl-tRNA synthetase inhibitor Halofuginone inhibits SARS-CoV-2 infection. bioRxiv. https://doi.org/10.1101/2021.03.22.436522

Article  PubMed  PubMed Central  Google Scholar 

Zhong M, Zhang X, Shi X, Zheng C (2020) Halofuginone inhibits LPS-induced attachment of monocytes to HUVECs. Int Immunopharmacol 87:106753

Article  CAS  PubMed  Google Scholar 

Chu TL, Guan Q, Nguan CY, Du C (2013) Halofuginone suppresses T cell proliferation by blocking proline uptake and inducing cell apoptosis. Int Immunopharmacol 16(4):414–423

Article  CAS  PubMed  Google Scholar 

Chu TL, Guan Q, Nguan CY, Du C (2015) Halofuginone synergistically enhances anti-proliferation of rapamycin in T cells and reduces cytotoxicity of cyclosporine in cultured renal tubular epithelial cells. PLoS ONE 10(12):e0144735

Article  PubMed  PubMed Central  Google Scholar 

Leiba M, Cahalon L, Shimoni A, Lider O, Zanin-Zhorov A, Hecht I, Sela U, Vlodavsky I, Nagler A (2006) Halofuginone inhibits NF-kappaB and p38 MAPK in activated T cells. J Leukoc Biol 80(2):399–406

Article  CAS  PubMed  Google Scholar 

Miller FW (2023) The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol 80:102266

Article  CAS  PubMed  Google Scholar 

Conrad N, Misra S, Verbakel JY, Verbeke G, Molenberghs G, Taylor PN, Mason J, Sattar N, McMurray JJV, McInnes IB et al (2023) Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet 401(10391):1878–1890

Article  PubMed  Google Scholar 

Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Invest 116(5):1218–1222

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tesmer LA, Lundy SK, Sarkar S, Fox DA (2008) Th17 cells in human disease. Immunol Rev 223:87–113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu P, Cai J, Yang C, Xu L, Ma S, Song H, Yang P (2024) SLAMF3 promotes Th17 differentiation and is reversed by iguratimod through JAK1/STAT3 pathway in primary Sjögren’s syndrome. Int Immunopharmacol 126:111282

Article  CAS  PubMed  Google Scholar 

Moser T, Akgün K, Proschmann U, Sellner J, Ziemssen T (2020) The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun Rev 19(10):102647

Article  CAS  PubMed  Google Scholar 

van Langelaar J, de Vuurst Vries van der RM, Janssen M, Wierenga-Wolf AF, Spilt IM, Siepman TA, Dankers W, Verjans G, de Vries HE, Lubberts E et al (2018) T helper 171 cells associate with multiple sclerosis disease activity: perspectives for early intervention. Brain. 141(5):1334–1349

Article  PubMed  Google Scholar 

Franchi L, Monteleone I, Hao LY, Spahr MA, Zhao W, Liu X, Demock K, Kulkarni A, Lesch CA, Sanchez B et al (2017) Inhibiting oxidative phosphorylation in vivo restrains Th17 effector responses and ameliorates murine colitis. J Immunol 198(7):2735–2746

Article  CAS  PubMed 

Comments (0)

No login
gif