Guangxi Zhuang Autonomous Region Food and Drug Administration (2011) Guangxi Zhuang Autonomous Region Zhuang Medicine Quality Standard. Guangxi Science and Technology Press, Guangxi
Liang X, Wang J, Guan RJ, Zhao L, Li DF, Long Z, Yang Q, Xu JY, Wang ZY, Xie JK, Lu WJ (2018) Limax extract ameliorates cigarette smoke-induced chronic obstructive pulmonary disease in mice. Int Immunopharmacol 54:210–220. https://doi.org/10.1016/j.intimp.2017.11.004
Article CAS PubMed Google Scholar
Lin GQ, Yan PK, Luo QF, Xie JK (2011) Therapeutic effect of freeze-dried slug powder in acute bronchitis. Guide of Chin Med 9:248–250. https://doi.org/10.15912/j.cnki.gocm.2011.21.040
Li LY (2019) Study on the antiasthmatic effect and mechanism of Limax extract and its quality control. Guangxi University of Chinese Medicine. https://doi.org/10.27879/d.cnki.ggxzy.2019.000218
Li LY, Wei QY, Tang XN, Long L, Tang RB (2019) Effects of limax lyophilized powder on asthma latency and levels of serum and bronchoalveolar lavage fluid interferon γ and interleukin 4 in rats with bronchial asthma. Guangxi Med J 41:1921–1924. https://doi.org/10.11675/j.issn.0253-4304.2019.15.13
Wei XY, Gao JP (2022) Research progress on chemical composition and pharmacological action of Limax maximus. Shanghai J Tradit Chin Med 56:89–95. https://doi.org/10.16305/j.1007-1334.2022.2103054
Yan PK, Lin GQ, Luo QF, Xie JK (2011) Effect of limax lyophilized powder on bronchial asthma. Chin Med Mat 34:1086–1089. https://doi.org/10.13863/j.issn1001-4454.2011.07.031
Liang X, Wu HB, Sun N, Liu T (2021) Effects of limax extract on LPS-induced acute inflammation of airway and pulmonary in mice. Chin J Mod Appl Pharm 38:2913–2920. https://doi.org/10.13748/j.cnki.issn1007-7693.2021.23.001
Huang YL, Wei YQ, He RJ, Li Y, Tang PD, Ruan J, Wang YF, Li DP (2018) Chemical constituents from Agriolimax agrestis. Chin Tradit Pat Med 40:2471–2474. https://doi.org/10.3969/j.issn.1001-1528.2018.11.022
Zhang ZX, WangYF, He RJ, Huang YL (2021) GC-MS analysis of the volatile oil from Agriolimax Agrestis Linnaeus. Guangdong Chem Indus 48:217–219+201. https://doi.org/10.3969/j.issn.1007-1865.2021.05.085
Zhang ZX, Wang YF, Zhang Y, He RJ, Wei YQ, Yang BY, Ruan J, Huang YL (2022) Study on the chemical constituents of Agriolimax agrestis (II). Nat Prod Res Dev 34:63–69. https://doi.org/10.16333/j.1001-6880.2022.1.009
Rudi A, Yosief T, Schleyer M, Kashman Y (1999) Several new isoprenoids from two marine sponges of the family Axinellidae. Tetrahedron 55:5555–5566. https://doi.org/10.1016/S0040-4020(99)00221-5
Cimino G, Madaio A, Trivellone E, Uriz M (1994) Minor triterpenoids from the mediterranean sponge, Raspaciona aculeata. J Nat Prod 57:784–790. https://doi.org/10.1021/np50108a015
Rudi A, Goldberg I, Stein Z, Benayahu Y, Schleyer M, Kashman Y, Sodwanones A-C (1993) Three new triterpenoids from a marine sponge. Tetrahedron Lett 34:3943–3944. https://doi.org/10.1016/S0040-4039(00)79270-7
Rudi A, Kashman Y, Benayahu Y, Schleyer M (1994) Sodwanones A-F, new triterpenoids from the marine sponge axinella weltneri. J Nat Prod 57:1416–1423. https://doi.org/10.1021/np50112a011
Carmely S, Kashman Y (1983) The Sipholanes: a novel group of triterpenes from the marine sponge Siphonochalina siphonella. J Org Chem 48:3517–3525. https://doi.org/10.1021/jo00168a029
José JF, María LS, Manuel N (2000) Marine polyether triterpenes. Nat Prod Rep 17:235–246. https://doi.org/10.1039/a909496b
Xu D, Chen YJ, Cao XX, Zheng JJ, Wang Y, Ma YY, Zhang K, Zhao DG (2024) Anti-inflammatory activity of phenolics from Dianella ensifolia. Phytochem Lett 61:187–190. https://doi.org/10.1016/J.PHYTOL.2024.05.001
Rizo MBA, Rodríguez FR, Romero TCJ, Riegos LCJ, Camacho RAM, Herrera ALA, Torre VEF, Góngora CE, Argáez AEV (2024) Models in vivo and in vitro for the study of acute and chronic inflammatory activity: a comprehensive review. Int Immunopharmacol 135:112292. https://doi.org/10.1016/J.INTIMP.2024.112292
Liu Y, Wang AF, Anam N, Ye HL, Jiang P, Li XM, Wang SY, Pan J, Guan W, Lan W, Yang BY (2022) Phenylpropanoids and triterpenoids from Tripterygium regelii and their anti-inflammatory activities. Phytochem Lett 49:73–78. https://doi.org/10.1016/J.PHYTOL.2022.03.00
Carmely S, Kashman Y (1986) Neviotine-A, a new triterpene from the red sea sponge Siphonochalina siphonella. J Org Chem 51:784–788. https://doi.org/10.1021/jo00356a003
Carmely S, Loya Y, Kashman Y (1983) Siphenellinol, a new triterpene from the marine sponge siphonochalinasiphonella. Tetrahedron Lett 24:3673–3676. https://doi.org/10.1016/S0040-4039(00)88198-8
Cimino G, Crispino A, Mattia CA, Mazzarella L, Puliti R, Trivellone E, Uriz MJ (1990) A new triterpenoid skeleton from the mediterranean sponge raspaciona aculeata: structure of raspacionin. Tetrahedron Lett 31:6565–6568. https://doi.org/10.1016/S0040-4039(00)97118-1
Kusumi T, Ohtani I, Inouye Y, Kakisawa H (1988) Absolute configurations of cytotoxic marine cembranolides; consideration of mosher’s method. Tetrahedron Lett 29:4731–4734. https://doi.org/10.1016/S0040-4039(00)80593-6
Ohtani I, Kusumi T, Ishitsuka OM, Kakisawa H (1989) Absolute configurations of marine diterpenes possessing a xenicane skeleton. An application of an advanced mosher’s method. Tetrahedron Lett 30:3147–3150. https://doi.org/10.1016/S0040-4039(00)99187-1
Ohtani I, Kusumi T, Kashman Y, Kakisawa H (1991) A new aspect of the high-field NMR application of Mosher’s method. The absolute configuration of marine triterpene sipholenol A. J Org Chem 56:1296–1298. https://doi.org/10.1021/jo00003a067
Ohtani I, Kusumi T, Kashman Y, Kakisawa H (1991) High-field FT NMR application of Mosher’s method. The absolute configurations of marine terpenoids. J Am Chem Soc 113:4092–4096. https://doi.org/10.1021/ja00011a006
Comments (0)