Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19(12):1584–1596. https://doi.org/10.1038/nm.3407
Article PubMed PubMed Central Google Scholar
Nadareishvili Z, Simpkins AN, Hitomi E, Reyes D, Leigh R (2019) Post-stroke blood-brain barrier disruption and poor functional outcome in patients receiving thrombolytic therapy. Cerebrovasc Dis 47(3–4):135–142. https://doi.org/10.1159/000499666
Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14(3):133–150. https://doi.org/10.1038/nrneurol.2017.188
Article PubMed PubMed Central Google Scholar
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99(1):21–78. https://doi.org/10.1152/physrev.00050.2017
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163:144–171. https://doi.org/10.1016/j.pneurobio.2017.10.001
Yang C, Hawkins KE, Dore S, Candelario-Jalil E (2019) Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 316(2):C135–C153. https://doi.org/10.1152/ajpcell.00136.2018
Wang Y, Xiao G, He S, Liu X, Zhu L, Yang X, Zhang Y, Orgah J, Feng Y, Wang X, Zhang B, Zhu Y (2020) Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization. Biomed Pharmacother 125:109945. https://doi.org/10.1016/j.biopha.2020.109945
Bernardo-Castro S, Sousa JA, Bras A, Cecilia C, Rodrigues B, Almendra L, Machado C, Santo G, Silva F, Ferreira L, Santana I, Sargento-Freitas J (2020) Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol 11:594672. https://doi.org/10.3389/fneur.2020.594672
Article PubMed PubMed Central Google Scholar
Xu M, Wu RX, Li XL, Zeng YS, Liang JY, Fu K, Liang Y, Wang Z (2022) Traditional medicine in China for ischemic stroke: bioactive components, pharmacology, and mechanisms. J Integr Neurosci 21(1):26. https://doi.org/10.31083/j.jin2101026
Su CY, Ming QL, Rahman K, Han T, Qin LP (2015) Salvia miltiorrhiza: traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med 13(3):163–182. https://doi.org/10.1016/S1875-5364(15)30002-9
Chen Z, Zhang C, Gao F, Fu Q, Fu C, He Y, Zhang J (2018) A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol 119:309–325. https://doi.org/10.1016/j.fct.2018.02.050
Yin C, Zhang M, Jin S, Zhou Y, Ding L, Lv Q, Huang Z, Zhou J, Chen J, Wang P, Zhang S, You Q (2024) Mechanism of Salvia miltiorrhiza Bunge extract to alleviate chronic sleep deprivation-induced cognitive dysfunction in rats. Phytomedicine 130:155725. https://doi.org/10.1016/j.phymed.2024.155725
Yu B, Yao Y, Zhang X, Ruan M, Zhang Z, Xu L, Liang T, Lu J (2021) Synergic neuroprotection between Ligusticum chuanxiong Hort and borneol against ischemic stroke by neurogenesis via modulating reactive astrogliosis and maintaining the blood-brain barrier. Front Pharmacol 12:666790. https://doi.org/10.3389/fphar.2021.666790
Article PubMed PubMed Central Google Scholar
Wang Y, Li Y, Zhou Y, Gao Y, Zhao L (2024) Guanxinning tablet alleviates post-ischemic stroke injury via regulating complement and coagulation cascades pathway and inflammatory network mobilization. Drug Des Devel Ther 18:4183–4202. https://doi.org/10.2147/DDDT.S479881
Article PubMed PubMed Central Google Scholar
Hui XR, Jin Q, He JM, Liu L, Zhao XP (2022) Mechanism of Guanxinning against cerebral ischemia-reperfusion injury in mice based on transcriptomic analysis. Zhongguo Zhong Yao Za Zhi 47(11):3015–3022. https://doi.org/10.19540/j.cnki.cjcmm.20220322.402
Xiao G, Lyu M, Li Z, Cao L, Liu X, Wang Y, He S, Chen Z, Du H, Feng Y, Wang J, Zhu Y (2021) Restoration of early deficiency of axonal guidance signaling by guanxinning injection as a novel therapeutic option for acute ischemic stroke. Pharmacol Res 165:105460. https://doi.org/10.1016/j.phrs.2021.105460
Biju TS, Priya VV, Francis AP (2023) Role of three-dimensional cell culture in therapeutics and diagnostics: an updated review. Drug Deliv Transl Res 13(9):2239–2253. https://doi.org/10.1007/s13346-023-01327-6
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R (2023) Three-dimensional cell cultures: the bridge between in vitro and in vivo models. Int J Mol Sci 24(15):12046. https://doi.org/10.3390/ijms241512046
Article PubMed PubMed Central Google Scholar
Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 32(4):266–277. https://doi.org/10.1152/physiol.00036.2016
Lee SY, Koo IS, Hwang HJ, Lee DW (2023) In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discov 28(4):119–137. https://doi.org/10.1016/j.slasd.2023.03.006
Perez-Lopez A, Torres-Suarez AI, Martin-Sabroso C, Aparicio-Blanco J (2023) An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Adv Drug Deliv Rev 196:114816. https://doi.org/10.1016/j.addr.2023.114816
Fang Y, Eglen RM (2017) Three-dimensional cell cultures in drug discovery and development. SLAS Discov 22(5):456–472. https://doi.org/10.1177/1087057117696795
Article PubMed PubMed Central Google Scholar
Nzou G, Wicks RT, VanOstrand NR, Mekky GA, Seale SA, El-Taibany A, Wicks EE, Nechtman CM, Marrotte EJ, Makani VS, Murphy SV, Seeds MC, Jackson JD, Atala AJ (2020) Multicellular 3D neurovascular unit model for assessing hypoxia and neuroinflammation induced blood-brain barrier dysfunction. Sci Rep 10(1):9766. https://doi.org/10.1038/s41598-020-66487-8
Article PubMed PubMed Central Google Scholar
Urich E, Patsch C, Aigner S, Graf M, Iacone R, Freskgard PO (2013) Multicellular self-assembled spheroidal model of the blood brain barrier. Sci Rep 3:1500. https://doi.org/10.1038/srep01500
Article PubMed PubMed Central Google Scholar
Cho CF, Wolfe JM, Fadzen CM, Calligaris D, Hornburg K, Chiocca EA, Agar NYR, Pentelute BL, Lawler SE (2017) Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun 8:15623. https://doi.org/10.1038/ncomms15623
Article PubMed PubMed Central Google Scholar
Li Q, Sheng J, Baruscotti M, Liu Z, Wang Y, Zhao L (2025) Identification of Senkyunolide I as a novel modulator of hepatic steatosis and PPARα signaling in zebrafish and hamster models. J Ethnopharmacol 336:118743. https://doi.org/10.1016/j.jep.2024.118743
Du HY, Xue ZF, Xia ZT, He S, Yang J, Zhu Y (2022) Construction of 3D blood-brain barrier organoid oxygen-glucose deprivation model and exploration of the protective effect of Guanxinning injection. Acta Pharmaceutica Sinica 57(10):3086–3094. https://doi.org/10.16438/j.0513-4870.2021-1871
Ko E, Poon MLS, Park E, Cho Y, Shin JH (2021) Engineering 3D cortical spheroids for an in vitro ischemic stroke model. ACS Biomater Sci Eng 7(8):3845–3860. https://doi.org/10.1021/acsbiomaterials.1c00406
Kitamura K, Umehara K, Ito R, Yamaura Y, Komori T, Morio H, Akita H, Furihata T (2021) Development, characterization and potential applications of a multicellular spheroidal human blood-brain barrier model integrating three conditionally immortalized cell lines. Biol Pharm Bull 44(7):984–991. https://doi.org/10.1248/bpb.b21-00218
Comments (0)