Chrysin Boosts the Cell Death and Anticancer Actions of Doxorubicin by Stimulating the TRPM2 Channel in Glioblastoma Cells

Shakya S., Gromovsky A.D., Hale J.S., Knudsen A.M., Prager B., Wallace L.C., Penalva L.O., Brown H.A., Kristensen B.W., Rich J.N. 2021. Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathol. Commun. 9 (1), 101.

CAS  PubMed  PubMed Central  Google Scholar 

Chen S.-J., Hoffman N.E., Shanmughapriya S., Bao L., Keefer K., Conrad K., Merali S., Takahashi Y., Abraham T., Hirschler-Laszkiewicz I. 2014. A splice variant of the human ion channel TRPM2 modulates neuroblastoma tumor growth through hypoxia-inducible factor (HIF)-1/2α. J. Biol. Chem. 289 (52), 36284–36302.

CAS  PubMed  PubMed Central  Google Scholar 

Ramalho M.J., Alves B., Andrade S., Lima J., Loureiro J.A., Pereira M.C. 2024. Folic-acid-conjugated poly (lactic-co-glycolic acid) nanoparticles loaded with gallic acid induce glioblastoma cell death by reactive-oxygen-species-induced stress. Polymers. 16 (15), 2161.

CAS  PubMed  PubMed Central  Google Scholar 

Akyuva Y., Nazıroğlu M. 2023. Silver nanoparticles potentiate antitumor and oxidant actions of cisplatin via the stimulation of TRPM2 channel in glioblastoma tumor cells. Chem. Biol. Interact. 369, 110261.

CAS  PubMed  Google Scholar 

Hsu S.-S., Chou C.-T., Liao W.-C., Shieh P., Kuo D.-H., Kuo C.-C., Jan C.-R., Liang W.-Z. 2016. The effect of gallic acid on cytotoxicity, Ca2+ homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Chem. Biol. Interact. 252, 61–73.

CAS  PubMed  Google Scholar 

Yazğan Y., Nazıroğlu M. 2021. Involvement of TRPM2 in the neurobiology of experimental migraine: Focus on oxidative stress and apoptosis. Mol. Neurobiol. 58 (11), 5581–5601.

PubMed  Google Scholar 

Naziroglu M., Oz A., Yildizhan K. 2020. Selenium and neurological diseases: Focus on peripheral pain and TRP channels. Curr. Neuropharmacol. 18 (6), 501–517.

PubMed  PubMed Central  Google Scholar 

Akpınar O., Özşimşek A., Güzel M., Nazıroğlu M. 2020. Clostridium botulinum neurotoxin A induces apoptosis and mitochondrial oxidative stress via activation of TRPM2 channel signaling pathway in neuroblastoma and glioblastoma tumor cells. J. Recept. Signal Transduct. Res. 40 (6), 620–632.

PubMed  Google Scholar 

Hajnóczky G., Csordás G., Das S., Garcia-Perez C., Saotome M., Roy S.S., Yi M. 2006. Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 40 (5–6), 553–560.

PubMed  PubMed Central  Google Scholar 

Öcal Ö., Nazıroğlu M. 2022. Eicosapentaenoic acid enhanced apoptotic and oxidant effects of cisplatin via activation of TRPM2 channel in brain tumor cells. Chem. Biol. Interact. 359, 109914.

PubMed  Google Scholar 

Aye K.T., Wattanapongpitak S., Supawat B., Kothan S., Udomtanakunchai C., Tima S., Pan J., Tungjai M. 2021. Gallic acid enhances pirarubicin-induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P-glycoprotein inhibition. Oncol. Rep. 46 (4), 227.

CAS  PubMed  Google Scholar 

Yıldızhan K., Huyut Z., Altındağ F. 2023. Involvement of TRPM2 channel on doxorubicin-induced experimental cardiotoxicity model: Protective role of selenium. Biol. Trace Elem. Res. 201 (5), 2458–2469.

PubMed  Google Scholar 

Yazğan Y., Yazğan B. 2024. gossypin regulated doxorubicin-ınduced oxidative stress and ınflammation in H9c2 cardiomyocyte cells. Med. Rec. 6 (1), 44–49.

Google Scholar 

Han Z., Yang J., Wang P., Bian F., and Jia J. 2023. Oxidative stress induction by narasin augments doxorubicin’s efficacy in osteosarcoma. BMC Pharmacol. Toxicol. 24 (1), 56.

CAS  PubMed  PubMed Central  Google Scholar 

Yıldızhan K., Huyut Z., Altındağ F., Ahlatcı A. 2023. Effect of selenium against doxorubicin-induced oxidative stress, inflammation, and apoptosis in the brain of rats: Role of TRPM2 channel. Ind. J. Biochem. Biophys. 60 (3), 177–185.

Google Scholar 

Punia R., Raina K., Agarwal R., Singh R.P. 2017. Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One. 12 (8), e0182870.

PubMed  PubMed Central  Google Scholar 

Bayir M.H., Yıldızhan K., Altındağ F. 2023. Effect of hesperidin on sciatic nerve damage in STZ-ınduced diabetic neuropathy: Modulation of TRPM2 channel. Neurotoxic. Res. 41 (6), 638–647.

CAS  Google Scholar 

Yıldızhan K., Nazıroğlu M. 2023. NMDA receptor activation stimulates hypoxia-ınduced TRPM2 channel activation, mitochondrial oxidative stress, and apoptosis in neuronal cell line: Modular role of memantine. Brain Res. 1803, 148232.

PubMed  Google Scholar 

Ertilav K., Nazıroğlu M. 2023. Honey bee venom melittin increases the oxidant activity of cisplatin and kills human glioblastoma cells by stimulating the TRPM2 channel. Toxicon. 222, 106993.

CAS  PubMed  Google Scholar 

Qu Y.n., Gao R., Wei X., Sun X., Yang K., Shi H., Gao Y., Hu S., Wang Y., Yang J.e. 2022. Gasdermin D mediates endoplasmic reticulum stress via FAM134B to regulate cardiomyocyte autophagy and apoptosis in doxorubicin-induced cardiotoxicity. Cell Death Dis. 13 (10), 901.

CAS  PubMed  PubMed Central  Google Scholar 

Naz S., Imran M., Rauf A., Orhan I.E., Shariati M.A., Shahbaz M., Qaisrani T.B., Shah Z.A., Plygun S., Heydari M. 2019. Chrysin: Pharmacological and therapeutic properties. Life Sci. 235, 116797.

CAS  PubMed  Google Scholar 

Huo J., Zhang M., Wang X., Zou D. 2021. Chrysin induces osteogenic differentiation of human dental pulp stem cells. Exp. Cell Res. 400 (2), 112466.

CAS  PubMed  Google Scholar 

Kasala E.R., Bodduluru L.N., Madana R.M., Gogoi R., Barua C.C. 2015. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett. 233 (2), 214–225.

CAS  PubMed  Google Scholar 

Ayna A., Sağ S., Bayav İ., Darendelioğlu E. 2025. Chrysin protects neuronal cells against carboplatin exposure-induced apoptosis and oxidative damage. J. Cell. Neurosci. Oxid. Stress. 17 (1), 1237–1244.

Google Scholar 

Zeinali M., Rezaee S.A., Hosseinzadeh H. 2017. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed. Pharmacother. 92, 998–1009.

CAS  PubMed  Google Scholar 

Middleton E., Jr., Kandaswami C., Theoharides T.C. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52 (4), 673–751.

CAS  PubMed  Google Scholar 

Ren J., Cheng H., Xin W.Q., Chen X., Hu K. 2012. Induction of apoptosis by 7-piperazinethylchrysin in HCT-116 human colon cancer cells. Oncol. Rep. 28 (5), 1719–1726.

CAS  PubMed  Google Scholar 

Bahadori M., Baharara J., Amini E. 2016. Anticancer properties of chrysin on colon cancer cells, in vitro and in vivo with modulation of caspase-3,-9, Bax and Sall4. Iran. J. Biotechnol. 14 (3), 177.

PubMed  PubMed Central  Google Scholar 

Zheng H., Li S., Pu Y., Lai Y., He B., Gu Z. 2014. Nanoparticles generated by PEG-Chrysin conjugates for efficient anticancer drug delivery. Eur. J. Pharm. Biopharm. 87 (3), 454–460.

CAS  PubMed  Google Scholar 

Sabzichi M., Mohammadian J., Bazzaz R., Pirouzpanah M.B., Shaaker M., Hamishehkar H., Chavoshi H., Salehi R., Samadi N. 2017. Chrysin loaded nanostructured lipid carriers (NLCs) triggers apoptosis in MCF-7 cancer cells by inhibiting the Nrf2 pathway. Process Biochem. 60, 84−91.

CAS  Google Scholar 

Cheung J.Y., Miller B.A. 2017. Transient receptor potential–Melastatin Channel Family Member 2: friend or foe. Trans. Am. Clin. Climatol. Assoc. 128, 308.

PubMed  PubMed Central  Google Scholar 

Maruhashi R., Eguchi H., Akizuki R., Hamada S., Furuta T., Matsunaga T., Endo S., Ichihara K., Ikari A. 2019. Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Sci. Rep. 9 (1), 13753.

PubMed  PubMed Central  Google Scholar 

Al-Oudat B.A., Alqudah M.A., Audat S.A., Al-Balas Q.A., El-Elimat T., Hassan M.A., Frhat I.N., Azaizeh M.M. 2019. Design, synthesis, and biologic evaluation of novel chrysin derivatives as cytotoxic agents and caspase-3/7 activators. Drug Des. Dev. Ther. 13, 423–433.

CAS  Google Scholar 

Wang J., Wang H., Sun K., Wang X., Pan H., Zhu J., Ji X., Li X. 2018. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway. Drug Des. Dev. Ther. 12, 721–733.

CAS  Google Scholar 

Maszczyk M., Banach K., Karkoszka M., Rzepka Z., Rok J., Beberok A., Wrześniok D. 2022. Chemosensitization of U-87 MG glioblastoma cells by neobavaisoflavone towards doxorubicin and etoposide. Int. J. Mol. Sci. 23 (10), 5621.

CAS  PubMed  PubMed Central  Google Scholar 

Yazğan B., Yazğan Y. 2022. Potent antioxidant alpha lipoic acid reduces STZ-induced oxidative stress and apoptosis levels in the erythrocytes and brain cells of diabetic rats. J. Cell. Neurosci. Oxid. Stress. 14 (2), 1085–1094.

Google Scholar 

Nahar K., Hasanuzzaman M., Fujita M. 2016. Physiological roles of glutathione in conferring abiotic stress tolerance to plants. Abiotic Stress Response in Plants. 155–184.

Krakstad C., Chekenya M. 2010. Survival signalling and apoptosis resistance in glioblastomas: Opportunities for targeted therapeutics. Mol. Cancer. 9, 135.

Gökçe Kütük S., Gökçe G., Kütük M., Gürses Cila H.E., Nazıroğlu M. 2019. Curcumin enhances cisplatin-induced human laryngeal squamous cancer cell death through activation of TRPM2 channel and mitochondrial oxidative stress. Sci. Rep. 9 (1), 17784.

PubMed  PubMed Central 

Comments (0)

No login
gif