Shakya S., Gromovsky A.D., Hale J.S., Knudsen A.M., Prager B., Wallace L.C., Penalva L.O., Brown H.A., Kristensen B.W., Rich J.N. 2021. Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathol. Commun. 9 (1), 101.
CAS PubMed PubMed Central Google Scholar
Chen S.-J., Hoffman N.E., Shanmughapriya S., Bao L., Keefer K., Conrad K., Merali S., Takahashi Y., Abraham T., Hirschler-Laszkiewicz I. 2014. A splice variant of the human ion channel TRPM2 modulates neuroblastoma tumor growth through hypoxia-inducible factor (HIF)-1/2α. J. Biol. Chem. 289 (52), 36284–36302.
CAS PubMed PubMed Central Google Scholar
Ramalho M.J., Alves B., Andrade S., Lima J., Loureiro J.A., Pereira M.C. 2024. Folic-acid-conjugated poly (lactic-co-glycolic acid) nanoparticles loaded with gallic acid induce glioblastoma cell death by reactive-oxygen-species-induced stress. Polymers. 16 (15), 2161.
CAS PubMed PubMed Central Google Scholar
Akyuva Y., Nazıroğlu M. 2023. Silver nanoparticles potentiate antitumor and oxidant actions of cisplatin via the stimulation of TRPM2 channel in glioblastoma tumor cells. Chem. Biol. Interact. 369, 110261.
Hsu S.-S., Chou C.-T., Liao W.-C., Shieh P., Kuo D.-H., Kuo C.-C., Jan C.-R., Liang W.-Z. 2016. The effect of gallic acid on cytotoxicity, Ca2+ homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Chem. Biol. Interact. 252, 61–73.
Yazğan Y., Nazıroğlu M. 2021. Involvement of TRPM2 in the neurobiology of experimental migraine: Focus on oxidative stress and apoptosis. Mol. Neurobiol. 58 (11), 5581–5601.
Naziroglu M., Oz A., Yildizhan K. 2020. Selenium and neurological diseases: Focus on peripheral pain and TRP channels. Curr. Neuropharmacol. 18 (6), 501–517.
PubMed PubMed Central Google Scholar
Akpınar O., Özşimşek A., Güzel M., Nazıroğlu M. 2020. Clostridium botulinum neurotoxin A induces apoptosis and mitochondrial oxidative stress via activation of TRPM2 channel signaling pathway in neuroblastoma and glioblastoma tumor cells. J. Recept. Signal Transduct. Res. 40 (6), 620–632.
Hajnóczky G., Csordás G., Das S., Garcia-Perez C., Saotome M., Roy S.S., Yi M. 2006. Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 40 (5–6), 553–560.
PubMed PubMed Central Google Scholar
Öcal Ö., Nazıroğlu M. 2022. Eicosapentaenoic acid enhanced apoptotic and oxidant effects of cisplatin via activation of TRPM2 channel in brain tumor cells. Chem. Biol. Interact. 359, 109914.
Aye K.T., Wattanapongpitak S., Supawat B., Kothan S., Udomtanakunchai C., Tima S., Pan J., Tungjai M. 2021. Gallic acid enhances pirarubicin-induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P-glycoprotein inhibition. Oncol. Rep. 46 (4), 227.
Yıldızhan K., Huyut Z., Altındağ F. 2023. Involvement of TRPM2 channel on doxorubicin-induced experimental cardiotoxicity model: Protective role of selenium. Biol. Trace Elem. Res. 201 (5), 2458–2469.
Yazğan Y., Yazğan B. 2024. gossypin regulated doxorubicin-ınduced oxidative stress and ınflammation in H9c2 cardiomyocyte cells. Med. Rec. 6 (1), 44–49.
Han Z., Yang J., Wang P., Bian F., and Jia J. 2023. Oxidative stress induction by narasin augments doxorubicin’s efficacy in osteosarcoma. BMC Pharmacol. Toxicol. 24 (1), 56.
CAS PubMed PubMed Central Google Scholar
Yıldızhan K., Huyut Z., Altındağ F., Ahlatcı A. 2023. Effect of selenium against doxorubicin-induced oxidative stress, inflammation, and apoptosis in the brain of rats: Role of TRPM2 channel. Ind. J. Biochem. Biophys. 60 (3), 177–185.
Punia R., Raina K., Agarwal R., Singh R.P. 2017. Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One. 12 (8), e0182870.
PubMed PubMed Central Google Scholar
Bayir M.H., Yıldızhan K., Altındağ F. 2023. Effect of hesperidin on sciatic nerve damage in STZ-ınduced diabetic neuropathy: Modulation of TRPM2 channel. Neurotoxic. Res. 41 (6), 638–647.
Yıldızhan K., Nazıroğlu M. 2023. NMDA receptor activation stimulates hypoxia-ınduced TRPM2 channel activation, mitochondrial oxidative stress, and apoptosis in neuronal cell line: Modular role of memantine. Brain Res. 1803, 148232.
Ertilav K., Nazıroğlu M. 2023. Honey bee venom melittin increases the oxidant activity of cisplatin and kills human glioblastoma cells by stimulating the TRPM2 channel. Toxicon. 222, 106993.
Qu Y.n., Gao R., Wei X., Sun X., Yang K., Shi H., Gao Y., Hu S., Wang Y., Yang J.e. 2022. Gasdermin D mediates endoplasmic reticulum stress via FAM134B to regulate cardiomyocyte autophagy and apoptosis in doxorubicin-induced cardiotoxicity. Cell Death Dis. 13 (10), 901.
CAS PubMed PubMed Central Google Scholar
Naz S., Imran M., Rauf A., Orhan I.E., Shariati M.A., Shahbaz M., Qaisrani T.B., Shah Z.A., Plygun S., Heydari M. 2019. Chrysin: Pharmacological and therapeutic properties. Life Sci. 235, 116797.
Huo J., Zhang M., Wang X., Zou D. 2021. Chrysin induces osteogenic differentiation of human dental pulp stem cells. Exp. Cell Res. 400 (2), 112466.
Kasala E.R., Bodduluru L.N., Madana R.M., Gogoi R., Barua C.C. 2015. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett. 233 (2), 214–225.
Ayna A., Sağ S., Bayav İ., Darendelioğlu E. 2025. Chrysin protects neuronal cells against carboplatin exposure-induced apoptosis and oxidative damage. J. Cell. Neurosci. Oxid. Stress. 17 (1), 1237–1244.
Zeinali M., Rezaee S.A., Hosseinzadeh H. 2017. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed. Pharmacother. 92, 998–1009.
Middleton E., Jr., Kandaswami C., Theoharides T.C. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52 (4), 673–751.
Ren J., Cheng H., Xin W.Q., Chen X., Hu K. 2012. Induction of apoptosis by 7-piperazinethylchrysin in HCT-116 human colon cancer cells. Oncol. Rep. 28 (5), 1719–1726.
Bahadori M., Baharara J., Amini E. 2016. Anticancer properties of chrysin on colon cancer cells, in vitro and in vivo with modulation of caspase-3,-9, Bax and Sall4. Iran. J. Biotechnol. 14 (3), 177.
PubMed PubMed Central Google Scholar
Zheng H., Li S., Pu Y., Lai Y., He B., Gu Z. 2014. Nanoparticles generated by PEG-Chrysin conjugates for efficient anticancer drug delivery. Eur. J. Pharm. Biopharm. 87 (3), 454–460.
Sabzichi M., Mohammadian J., Bazzaz R., Pirouzpanah M.B., Shaaker M., Hamishehkar H., Chavoshi H., Salehi R., Samadi N. 2017. Chrysin loaded nanostructured lipid carriers (NLCs) triggers apoptosis in MCF-7 cancer cells by inhibiting the Nrf2 pathway. Process Biochem. 60, 84−91.
Cheung J.Y., Miller B.A. 2017. Transient receptor potential–Melastatin Channel Family Member 2: friend or foe. Trans. Am. Clin. Climatol. Assoc. 128, 308.
PubMed PubMed Central Google Scholar
Maruhashi R., Eguchi H., Akizuki R., Hamada S., Furuta T., Matsunaga T., Endo S., Ichihara K., Ikari A. 2019. Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Sci. Rep. 9 (1), 13753.
PubMed PubMed Central Google Scholar
Al-Oudat B.A., Alqudah M.A., Audat S.A., Al-Balas Q.A., El-Elimat T., Hassan M.A., Frhat I.N., Azaizeh M.M. 2019. Design, synthesis, and biologic evaluation of novel chrysin derivatives as cytotoxic agents and caspase-3/7 activators. Drug Des. Dev. Ther. 13, 423–433.
Wang J., Wang H., Sun K., Wang X., Pan H., Zhu J., Ji X., Li X. 2018. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway. Drug Des. Dev. Ther. 12, 721–733.
Maszczyk M., Banach K., Karkoszka M., Rzepka Z., Rok J., Beberok A., Wrześniok D. 2022. Chemosensitization of U-87 MG glioblastoma cells by neobavaisoflavone towards doxorubicin and etoposide. Int. J. Mol. Sci. 23 (10), 5621.
CAS PubMed PubMed Central Google Scholar
Yazğan B., Yazğan Y. 2022. Potent antioxidant alpha lipoic acid reduces STZ-induced oxidative stress and apoptosis levels in the erythrocytes and brain cells of diabetic rats. J. Cell. Neurosci. Oxid. Stress. 14 (2), 1085–1094.
Nahar K., Hasanuzzaman M., Fujita M. 2016. Physiological roles of glutathione in conferring abiotic stress tolerance to plants. Abiotic Stress Response in Plants. 155–184.
Krakstad C., Chekenya M. 2010. Survival signalling and apoptosis resistance in glioblastomas: Opportunities for targeted therapeutics. Mol. Cancer. 9, 135.
Gökçe Kütük S., Gökçe G., Kütük M., Gürses Cila H.E., Nazıroğlu M. 2019. Curcumin enhances cisplatin-induced human laryngeal squamous cancer cell death through activation of TRPM2 channel and mitochondrial oxidative stress. Sci. Rep. 9 (1), 17784.
Comments (0)