DNA Double-Strand Break Repair System by a Mechanism of Non-Homologous End Joining Provides Resistance to DNA-Damaging and Oxidizing Stresses in the Yeast

Breuer U., Harms H. 2006. Debaryomyces hansenii—an extremophilic yeast with biotechnological potential. Yeast. 23 (6), 415–437.

CAS  PubMed  Google Scholar 

Gomes A.C., Miranda I., Silva R.M., Moura G.R., Thomas B., Akoulitchev A., Santos M.A. 2007. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol. 8 (10), R206.

PubMed  PubMed Central  Google Scholar 

Krassowski T., Coughlan A.Y., Shen X.X., Zhou X., Kominek J., Opulente D.A., Riley R., Grigoriev I.V., Maheshwari N., Shields D.C., Kurtzman C.P., Hittinger C.T., Rokas A., Wolfe K.H. 2018. Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nat. Commun. 9 (1), 1887.

PubMed  PubMed Central  Google Scholar 

Ochoa-Gutierrez D., Reyes-Torres A.M., de la Fuente-Colmenares I., Escobar-Sanchez V., Gonzalez J., Ortiz-Hernandez R., Torres-Ramirez N., Segal-Kischinevzky C. 2022. Alternative CUG codon usage in the halotolerant eeast Debaryomyces hansenii: Gene expression profiles provide new insights into ambiguous translation. J. Fungi. (Basel). 8 (9), 970.

CAS  Google Scholar 

Dantas Ada S., Day A., Ikeh M., Kos I., Achan B., Quinn J. 2015. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules. 5 (1), 142–165.

PubMed  Google Scholar 

Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., De Montigny J., Marck C., Neuveglise C., Talla E., Goffard N., Frangeul L., Aigle M., Anthouard V., Babour A., Barbe V., Barnay S., Blanchin S., Beckerich J.M., Beyne E., Bleykasten C., Boisrame A., Boyer J., Cattolico L., Confanioleri F., De Daruvar A., Despons L., Fabre E., Fairhead C., Ferry-Dumazet H., Groppi A., Hantraye F., Hennequin C., Jauniaux N., Joyet P., Kachouri R., Kerrest A., Koszul R., Lemaire M., Lesur I., Ma L., Muller H., Nicaud J.M., Nikolski M., Oztas S., Ozier-Kalogeropoulos O., Pellenz S., Potier S., Richard G.F., Straub M.L., Suleau A., Swennen D., Tekaia F., Wesolowski-Louvel M., Westhof E., Wirth B., Zeniou-Meyer M., Zivanovic I., Bolotin-Fukuhara M., Thierry A., Bouchier C., Caudron B., Scarpelli C., Gaillardin C., Weissenbach J., Wincker P., Souciet J.L. 2004. Genome evolution in yeasts. Nature. 430 (6995), 35–44.

PubMed  Google Scholar 

Loman A.A., Islam S.M.M., Ju L.K. 2018. Production of arabitol from enzymatic hydrolysate of soybean flour by Debaryomyces hansenii fermentation. Appl. Microbiol. Biotechnol. 102 (2), 641–653.

CAS  PubMed  Google Scholar 

Lopez-Linares J.C., Romero I., Cara C., Castro E., Mussatto S.I. 2018. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour. Technol. 247, 736–743.

CAS  PubMed  Google Scholar 

Garcia-Bramasco C.A., Blancas-Benitez F.J., Montano-Leyva B., Medrano-Castellon L.M., Gutierrez-Martinez P., Gonzalez-Estrada R.R. 2022. Influence of marine yeast Debaryomyces hansenii on antifungal and physicochemical properties of chitosan-based films. J. Fungi. (Basel). 8 (4), 369.

CAS  Google Scholar 

Czarnecka M., Zarowska B., Polomska X., Restuccia C., Cirvilleri G. 2019. Role of biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in plants’ defence mechanisms against Monilinia fructicola in apple fruits. Food Microbiol. 83, 1–8.

CAS  PubMed  Google Scholar 

Medina-Córdova N., Rosales-Mendoza S., Hernández-Montiel L.G., Angulo C. 2018. The potential use of Debaryomyces hansenii for the biological control of pathogenic fungi in food. Biol. Control. 121, 216–222.

Google Scholar 

Yang X., Xiao S., Wang J. 2024. Debaryomyces hansenii strains from traditional chinese dry-cured ham as good aroma enhancers in fermented sausage. Fermentation. 10 (3), 152.

Google Scholar 

Belloch C., Perea-Sanz L., Gamero A., Flores M. 2022. Selection of Debaryomyces hansenii isolates as starters in meat products based on phenotypic virulence factors, tolerance to abiotic stress conditions and aroma generation. J. Appl. Microbiol. 133 (1), 200–211.

CAS  PubMed  Google Scholar 

Gientka I., Kieliszek M., Jermacz K., Blazejak S. 2017. Identification and characterization of oleaginous yeast isolated from kefir and its ability to accumulate intracellular fats in deproteinated potato wastewater with different carbon sources. Biomed. Res. Int. 2017, 6061042.

PubMed  PubMed Central  Google Scholar 

Angulo M., Reyes-Becerril M., Cepeda-Palacios R., Angulo C. 2020. Oral administration of Debaryomyces hansenii CBS8339-beta-glucan induces trained immunity in newborn goats. Dev. Comp. Immunol. 105, 103597.

CAS  PubMed  Google Scholar 

Angulo M., Reyes-Becerril M., Medina-Cordova N., Tovar-Ramirez D., Angulo C. 2020. Probiotic and nutritional effects of Debaryomyces hansenii on animals. Appl. Microbiol. Biotechnol. 104 (18), 7689–7699.

CAS  PubMed  Google Scholar 

Angulo M., Ramos A., Reyes-Becerril M., Guerra K., Monreal-Escalante E., Angulo C. 2023. Probiotic Debaryomyces hansenii CBS 8339 yeast enhanced immune responses in mice. 3 Biotech. 13 (1), 28.

Sanahuja I., Ruiz A., Firmino J.P., Reyes-Lopez F.E., Ortiz-Delgado J.B., Vallejos-Vidal E., Tort L., Tovar-Ramirez D., Cerezo I.M., Morinigo M.A., Sarasquete C., Gisbert E. 2023. Debaryomyces hansenii supplementation in low fish meal diets promotes growth, modulates microbiota and enhances intestinal condition in juvenile marine fish. J. Anim. Sci. Biotechnol. 14 (1), 90.

CAS  PubMed  PubMed Central  Google Scholar 

Spasskaya D.S., Kotlov M.I., Lekanov D.S., Tutyaeva V.V., Snezhkina A.V., Kudryavtseva A.V., Karpov V.L., Karpov D.S. 2021. CRISPR/Cas9-mediated genome engineering reveals the contribution of the 26S proteasome to the extremophilic nature of the yeast Debaryomyces hansenii. ACS Synth. Biol. 10 (2), 297–308.

CAS  PubMed  Google Scholar 

Daley J.M., Palmbos P.L., Wu D., Wilson T.E. 2005. Nonhomologous end joining in yeast. Annu. Rev. Genet. 39, 431–451.

CAS  PubMed  Google Scholar 

Richard G.F., Kerrest A., Lafontaine I., Dujon B. 2005. Comparative genomics of hemiascomycete yeasts: Genes involved in DNA replication, repair, and recombination. Mol. Biol. Evol. 22 (4), 1011–1023.

CAS  PubMed  Google Scholar 

Minhas A., Biswas D., Mondal A.K. 2009. Development of host and vector for high-efficiency transformation and gene disruption in Debaryomyces hansenii. FEMS Yeast Res. 9 (1), 95–102.

CAS  PubMed  Google Scholar 

Strucko T., Andersen N.L., Mahler M.R., Martinez J.L., Mortensen U.H. 2021. A CRISPR/Cas9 method facilitates efficient oligo-mediated gene editing in Debaryomyces hansenii. Synth. Biol. (Oxford). 6 (1), ysab031.

Alhajouj S., Turkolmez S., Abalkhail T., Alwan Z.H.O., James Gilmour D., Mitchell P.J., Hettema E.H. 2023. Efficient PCR-based gene targeting in isolates of the nonconventional yeast Debaryomyces hansenii. Yeast. 40 (11), 550–564.

CAS  PubMed  Google Scholar 

Peng D., Tarleton R. 2015. EuPaGDT: A web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb. Genom. 1 (4), e000033.

PubMed  PubMed Central  Google Scholar 

Minhas A., Biswas D., Mondal A.K. 2009. Development of host and vector for high-efficiency transformation and gene disruption in Debaryomyces hansenii. FEMS Yeast Res. 9 (1), 95–102.

CAS  PubMed  Google Scholar 

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. 2009. BLAST+: architecture and applications. BMC Bioinf. 10, 421.

Google Scholar 

Chico L., Ciudad T., Hsu M., Lue N.F., Larriba G. 2011. The Candida albicans Ku70 modulates telomere length and structure by regulating both telomerase and recombination. PLoS One. 6 (8), e23732.

CAS  PubMed  PubMed Central  Google Scholar 

Legrand M., Chan C.L., Jauert P.A., Kirkpatrick D.T. 2007. Role of DNA mismatch repair and double-strand break repair in genome stability and antifungal drug resistance in Candida albicans. Eukaryot. Cell. 6 (12), 2194–2205.

CAS  PubMed  PubMed Central  Google Scholar 

Andaluz E., Ciudad T., Larriba G. 2002. An evaluation of the role of LIG4 in genomic instability and adaptive mutagenesis in Candida albicans. FEMS Yeast Res. 2 (3), 341–348.

CAS  PubMed  Google Scholar 

Rice P., Longden I., Bleasby A. 2000. EMBOSS: the European molecular biology open software suite. Trends Genet. 16 (6), 276–277.

CAS  PubMed  Google Scholar 

Pearson W.R. 2013. An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinf. Ch. 3, 311–318.

Google Scholar 

Jia X., Xiao W. 2003. Compromised DNA repair enhances sensitivity of the yeast RNR3-lacZ genotoxicity testing system. Toxicol. Sci. 75 (1), 82–88.

CAS  PubMed  Google Scholar 

Fasullo M., Zeng L., Giallanza P. 2004. Enhanced stimulation of chromosomal translocations by radiomimetic DNA damaging agents and camptothecin in Saccharomyces cerevisiae Rad9 checkpoint mutants. Mutat. Res. 547 (1–2), 123–132.

CAS  PubMed  PubMed Central  Google Scholar 

Oliva-Trastoy M., Defais M., Larminat F. 2005. Resistance to the antibiotic Zeocin by stable expression of the Sh ble gene does not fully suppress Zeocin-induced DNA cleavage in human cells. Mutagenesis. 20 (2), 111–114.

PubMed  Google Scholar 

Choi E.H., Yoon S., Hahn Y., Kim K.P. 2017. Cellular dynamics of Rad51 and Rad54 in response to postreplicative stress and DNA damage in HeLa cells. Mol. Cells. 40 (2), 143–150.

CAS  PubMed  PubMed Central  Google Scholar 

Wang H., Boecker W., Wang H., Wang X., Guan J., Thompson L.H., Nickoloff J.A., Iliakis G. 2004. Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks. Oncogene. 23 (3), 824–834.

CAS  PubMed  Google Scholar 

Zelensky A.N., Sanchez H., Ristic D., Vidic I., van Rossum-Fikkert S.E., Essers J., Wyman C., Kanaar R. 2013. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation. Nucleic Acids Res. 41 (13), 6475–6489.

CAS 

Comments (0)

No login
gif