Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. 2021. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3), 209–249. https://doi.org/10.3322/caac.21660
Article CAS PubMed Google Scholar
Perou C.M., Sørlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack J R., Ross D.T., Johnsen H., Akslen L.A., Fluge O., Pergamenschikov A., Williams C., Zhu S.X., Lønning P.E., Børresen-Dale A.L., Brown P.O., Botstein D. 2000. Molecular portraits of human breast tumours. Nature. 406 (6797), 747–752. https://doi.org/10.1038/35021093
Article CAS PubMed Google Scholar
Loibl S., Gianni L. 2017. HER2-positive breast cancer. Lancet. 389 (10087), 2415–2429. https://doi.org/10.1016/S0140-6736(16)32417-5
Article CAS PubMed Google Scholar
Baselga J., Cortés J., Kim S.B., Im S.A., Hegg R., Im Y.H., Roman L., Pedrini J.L., Pienkowski T., Knott A., Clark E., Benyunes M.C., Ross G., Swain S.M., CLEOPATRA Study Group 2012. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. New Engl. J. Med. 366 (2), 109–119. https://doi.org/10.1056/NEJMoa1113216
Nahta R., Yu D., Hung M.C., Hortobagyi G.N., Esteva F.J. 2006. Mechanisms of disease: Understanding resistance to HER2-targeted therapy in human breast cancer. Nat. Clin. Practice. Oncol. 3 (5), 269–280. https://doi.org/10.1038/ncponc0509
Nagata Y., Lan K.H., Zhou X., Tan M., Esteva F.J., Sahin A.A., Klos K.S., Li P., Monia B.P., Nguyen N.T., Hortobagyi G.N., Hung M.C., Yu D. 2004. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 6 (2), 117–127. https://doi.org/10.1016/j.ccr.2004.06.022
Article CAS PubMed Google Scholar
Korkaya H., Wicha M.S. 2013. HER2 and breast cancer stem cells: more than meets the eye. Cancer Res. 73 (12), 3489–3493. https://doi.org/10.1158/0008-5472.CAN-13-0260
Article CAS PubMed PubMed Central Google Scholar
Vasan N., Baselga J., Hyman D.M. 2019. A view on drug resistance in cancer. Nature. 575 (7782), 299–309, https://doi.org/10.1038/s41586-019-1730-1
Article CAS PubMed PubMed Central Google Scholar
Salgia R., Kulkarni P. 2018. The Genetic/Non-genetic Duality of Drug “Resistance” in Cancer. Trends Cancer. 4 (2), 110–118. https://doi.org/10.1016/j.trecan.2018.01.001
Article CAS PubMed PubMed Central Google Scholar
Lasfargues E.Y., Coutinho W.G., Redfield E.S. 1978. Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J. Natl. Cancer Inst. 61 (4), 967–978. https://doi.org/10.1093/jnci/61.4.967
Article CAS PubMed Google Scholar
Gale M., Li Y., Cao J., Liu Z.Z., Holmbeck M.A., Zhang M., Lang S.M., Wu L., Do Carmo M., Gupta S., Aoshima K., DiGiovanna M.P., Stern D.F., Rimm D.L., Shadel G.S., Chen X., Yan Q. 2020. Acquired resistance to HER2-targeted therapies creates vulnerability to ATP synthase inhibition. Cancer Res. 80 (3), 524–535. https://doi.org/10.1158/0008-5472.CAN-18-3985
Article CAS PubMed Google Scholar
von der Heyde S., Wagner S., Czerny A., Nietert M., Ludewig F., Salinas-Riester G., Arlt D., Beißbarth T. 2015. mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer, PLoS One. 10 (2), e0117818. https://doi.org/10.1371/journal.pone.0117818
Article CAS PubMed PubMed Central Google Scholar
van Slooten H.J., Bonsing B.A., Hiller A.J., Colbern G.T., van Dierendonck J.H., Cornelisse C.J., Smith H.S. 1995. Outgrowth of BT-474 human breast cancer cells in immune-deficient mice: A new in vivo model for hormone-dependent breast cancer. Br. J. Cancer. 72 (1), 22–30. https://doi.org/10.1038/bjc.1995.271
Article CAS PubMed PubMed Central Google Scholar
Andrews S. 2010. FastQC: A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 2024.
Bray N.L., Pimentel H., Melsted P., Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34 (5), 525–527. https://doi.org/10.1038/nbt.3519
Article CAS PubMed Google Scholar
Evangelista J.E., Xie Z., Marino G.B., Nguyen N., Clarke D.J.B., Ma’ayan A. 2023. Enrichr-KG: Bridging enrichment analysis across multiple libraries, Nucleic Acids Res. 51 (W1), W168–W179. https://doi.org/10.1093/nar/gkad393
Article CAS PubMed PubMed Central Google Scholar
De Siervi A., De Luca P., Byun J.S., Di L.J., Fufa T., Haggerty C.M., Vazquez E., Moiola C., Longo D.L., Gardner K. 2010. Transcriptional autoregulation by BRCA1. Cancer Res. 70 (2), 532–542. https://doi.org/10.1158/0008-5472.CAN-09-1477
Article CAS PubMed PubMed Central Google Scholar
Pashaei E., Guzel E., Ozgurses M.E., Demirel G., Aydin N., Ozen M. 2016. A meta-analysis: Identification of common Mir-145 target genes that have similar behavior in different GEO datasets. PLoS One. 11 (9), e0161491. https://doi.org/10.1371/journal.pone.0161491
Article CAS PubMed PubMed Central Google Scholar
Liu Q., Dong H.T., Zhao T., Yao F., Xu Y., Chen B., Wu Y., Jin F., Xing P. 2022. Cancer-associated adipocytes release FUCA2 to promote aggressiveness in TNBC. Endocr. Relat. Cancer. 29 (3), 139–149. https://doi.org/10.1530/ERC-21-0243
Article CAS PubMed Google Scholar
Chu S., Wen Q., Qing Z., Luo J., Wang W., Chen L., Feng J., Xu L., Zang H., Fan S. 2017. High expression of heat shock protein 10 correlates negatively with estrogen/progesterone receptor status and predicts poor prognosis in invasive ductal breast carcinoma. Hum. Pathol. 61, 173–180. https://doi.org/10.1016/j.humpath.2016.09.039
Article CAS PubMed Google Scholar
Zoppino F.C.M., Guerrero-Gimenez M.E., Castro G.N., Ciocca D.R. 2018. Comprehensive transcriptomic analysis of heat shock proteins in the molecular subtypes of human breast cancer. BMC Cancer. 18 (1), 700. https://doi.org/10.1186/s12885-018-4621-1
Article CAS PubMed PubMed Central Google Scholar
Dev H., Chiang T.W., Lescale C., de Krijger I., Martin A.G., Pilger D., Coates J., Sczaniecka-Clift M., Wei W., Ostermaier M., Herzog M., Lam J., Shea A., Demir M., Wu Q., Yang F., Fu B., Lai Z., Balmus G., Belotserkovskaya R., Serra V., O’Connor M.J., Bruna A., Beli P., Pellegrini L., Caldas C., Deriano L., Jacobs J.J.L., Galanty Y., Jackson S.P. 2018. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat. Cell Biol. 20 (8), 954–965. https://doi.org/10.1038/s41556-018-0140-1
Article CAS PubMed PubMed Central Google Scholar
Mirman Z., Sasi N.K., King A., Chapman J.R., de Lange T. 2022. 53BP1–shieldin-dependent DSB processing in BRCA1-deficient cells requires CST–Polα–primase fill-in synthesis. Nat. Cell Biol. 24, 51–61. https://doi.org/10.1038/s41556-021-00812-9
Article CAS PubMed PubMed Central Google Scholar
Sommer A.K., Hermawan A., Ljepoja B., Fröhlich T., Arnold G.J., Wagner E., Roidl A. 2018. A proteomic analysis of chemoresistance development via sequential treatment with doxorubicin reveals novel players in MCF‑7 breast cancer cells. Int. J. Mol. Med. 42 (4), 1987–1997. https://doi.org/10.3892/ijmm.2018.3781
Article CAS PubMed PubMed Central Google Scholar
Sommer A.-K. 2021. Development of chemoresistance and formation of metastases: New aspects of two major obstacles in breast cancer treatment. Doctoral Dissertation. LMU München: Faculty of Chemistry and Pharmacy. https://doi.org/10.5282/edoc.28067
Grillo P.K., Győrffy B., Götte M. 2021. Prognostic impact of the glypican family of heparan sulfate proteoglycans on the survival of breast cancer patients. J. Cancer Res. Clin. Oncol. 147 (7), 1937–1955. https://doi.org/10.1007/s00432-021-03597-4
Article CAS PubMed PubMed Central Google Scholar
Li Y., Yang P. 2011. GPC5 gene and its related pathways in lung cancer. J. Thorac. Oncol. 6 (1), 2–5. https://doi.org/10.1097/JTO.0b013e3181fd6b04
Comments (0)