Effects of Various Factors on Transcription Activity of Transposons in Oyster

Frost L.S., Leplae R., Summers A.O., Toussaint A. 2005. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3 (9), 722–732. https://doi.org/10.1038/nrmicro1235

Article  CAS  PubMed  Google Scholar 

Arkhipova I.R., Yushenova I.A. 2019. Giant transposons in eukaryotes: Is bigger better? Genome Biol. Evol. 11 (3), 906–918. https://doi.org/10.1093/gbe/evz041

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Koning A.P., Gu W., Castoe T.A., Batzer M.A., Pollock D.D. 2011. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7 (12), e1002384. https://doi.org/10.1371/journal.pgen.1002384

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo B., Zou M., Gan X., He S. 2010. Genome size evolution in pufferfish: An insight from BAC clone-based Diodon holocanthus genome sequencing. BMC Genomics. 11, 396. https://doi.org/10.1186/1471-2164-11-396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muñoz-López M., García-Pérez J. L. 2010. DNA transposons: Nature and applications in genomics. Curr. Genom. 11 (2), 115–128. https://doi.org/10.2174/138920210790886871

Article  Google Scholar 

Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., Mager D.L., Feschotte C. 2018. Ten things you should know about transposable elements. Genome Biol. 19 (1), 199. https://doi.org/10.1186/s13059-018-1577-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojima K.K. 2020. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 94 (6), 233–252. https://doi.org/10.1266/ggs.18-00024

Article  CAS  PubMed  Google Scholar 

Gao B., Wang Y., Diaby M., Zong W., Shen D., Wang S., Chen C., Wang X., Song C. 2020. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mob. DNA. 11, 25. https://doi.org/10.1186/s13100-020-00220-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puzakov M.V., Puzakova L.V. 2022. Prevalence, diversity, and evolution of L18 (DD37E) transposons in the genomes of cnidarians. Mol. Biol. (Moscow). 56 (3), 424‒436. https://doi.org/10.1134/S0026893322030104

Article  CAS  Google Scholar 

Claudianos C., Brownlie J., Russell R., Oakeshott J., Whyard S. 2002. maT—a clade of transposons intermediate between mariner and Tc1. Mol. Biol. Evol. 19 (12), 2101–2109. https://doi.org/10.1093/oxfordjournals.molbev.a004035

Article  CAS  PubMed  Google Scholar 

Zhang H.H., Shen Y.H., Xiong X.M., Han M.J., Zhang X.G. 2016. Identification and evolutionary history of the DD41D transposons in insects. Genes Genomics. 38, 109–117. https://doi.org/10.1007/s13258-015-0356-4

Article  CAS  Google Scholar 

Tellier M., Bouuaert C.C., Chalmers R. 2015. Mariner and the ITm superfamily of transposons. Microbiol. Spectr. 3 (2), 753–772. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014

Article  Google Scholar 

Shi S., Puzakov M., Guan Z., Xiang K., Diaby M., Wang Y., Wang S., Song C., Gao B. 2021. Prokaryotic and eukaryotic horizontal transfer of Sailor (DD82E), a new superfamily of IS630-Tc1-Mariner DNA-transposons. Biology (Basel). 10, 1005. https://doi.org/10.3390/biology10101005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi S., Puzakov M.V., Puzakova L.V., Ulupova Yu.N., Xiang K., Wang B., Gao B., Song Ch. 2023. Hiker, a new family of DNA transposons encoding transposases with DD35E motifs, displays a distinct phylogenetic relationship with most known DNA transposon families of IS630-Tc1-mariner (ITm). Mol. Phylogenet. Evol. 188, 107906. https://doi.org/10.1016/j.ympev.2023.107906

Article  CAS  PubMed  Google Scholar 

Puzakov M. V., Puzakova L.V. 2024. Structure and evolution of DNA transposons of the L31 superfamily in bivalves. Mol. Biol. (Moscow). 58 (1), 54‒72. https://doi.org/10.31857/S0026898424010051

Article  CAS  Google Scholar 

Puzakova L.V., Puzakov M.V., Puzakova P.M. 2024. L31 transposons of Hexacorallia: Distribution, diversity, and evolution. Russ. J. Genet. 60 (6), 716–723. https://doi.org/10.1134/S1022795424700157

Article  CAS  Google Scholar 

Liu Y., Zong W., Diaby M., Lin Z., Wang S., Gao B., Ji T., Song C. 2021. Diversity and evolution of pogo and Tc1/mariner transposons in the Apoidea genomes. Biology. 10 (9), 940. https://doi.org/10.3390/biology10090940

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tudor M., Lobocka M., Goodell M., Pettitt J., O’Hare K. 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232 (1), 126–134. https://doi.org/10.1007/BF00299145

Article  CAS  PubMed  Google Scholar 

Shao H.G., Tu Z.J. 2001. Expanding the diversity of the IS630-Tc1-mariner superfamily: Discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics. 159 (3), 1103–1115. https://doi.org/10.1093/genetics/159.3.1103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dupeyron M., Baril T., Bass C., Hayward A. 2020. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob. DNA. 11, 21. https://doi.org/10.1186/s13100-020-00212-0

Article  PubMed  PubMed Central  Google Scholar 

Puzakov M.V., Puzakova L.V., Cheresiz S.V. 2018. An analysis of IS630/Tc1/mariner transposons in the genome of a pacific oyster Crassostrea gigas. J. Mol. Evol. 86 (8), 566–580. https://doi.org/10.1007/s00239-018-9868-2

Article  CAS  PubMed  Google Scholar 

Chow K.C., Tung W.L. 2000. Magnetic field exposure stimulates transposition through the induction of DnaK/J synthesis. Biochem. Biophys. Res. Commun. 270 (3), 745–748. https://doi.org/10.1006/bbrc.2000.2496

Article  CAS  PubMed  Google Scholar 

Vasilyeva L.A., Ratner V.A., Antonenko O.V., Lopukhova E.D., Bubenshchikova E.V., 2003. Induction of MGE 412 transposition in an isogenic strain of Drosophila melanogaster by different doses of ethanol fumes. Russ. J. Genet. 39 (5), 592–595.

CAS  Google Scholar 

Del Re B., Garoia F., Mesirca P. Agostini C., Bersani F., Giorgi G. 2003. Extremely low frequency magnetic fields affect transposition activity in Escherichia coli. Radiat. Environ. Biophys. 42 (2), 113–118. https://doi.org/10.1007/s00411-003-0192-9

Article  CAS  PubMed  Google Scholar 

Zakharenko L.P., Kovalenko L.V., Zakharov I.K., Perepelkina M.P. 2006. The effect of γ-radiation on induction of the hobo element transposition in Drosophila melanogaster. Russ. J. Genet. 42, 619–622. https://doi.org/10.1134/S1022795406060056

Article  CAS  Google Scholar 

Vasilyeva L.A., Vikhristyuk O.V., Antonenko O.V., Zakharov I.K. 2008. Induction of mobile genetic elements transposition in Drosophila melanogaster genome by different stress factors. Inform. Vestn. VOGiS. 11, 662–671.

Google Scholar 

Cheresiz S.V., Yurchenko N.N., Ivannikov A.V., Zakharov I.K. 2008. Mobile elements and stress. Inform. Vestn. VOGiS. 12, 217–242.

Google Scholar 

Chalopin D., Naville M., Plard F., Galiana D., Volff J.-N. 2015. Comparative analysis of transposable elements highlights Mobilome diversity and evolution in vertebrates. Genome Biol. Evol. 7 (2), 567–580. https://doi.org/10.1093/gbe/evv005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao B., Shen D., Xue S., Chen C., Cui H., Song C. 2016. The contribution of transposable elements to size variations between four teleost genomes. Mob. DNA. (7), 1–16. https://doi.org/10.1186/s13100-016-0059-7

Petrov D.A. 2001. Evolution of genome size: new approaches to an old problem. Trends Genet. 17 (1), 23–28. https://doi.org/10.1016/s0168-9525(00)02157-0

Comments (0)

No login
gif