Frost L.S., Leplae R., Summers A.O., Toussaint A. 2005. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3 (9), 722–732. https://doi.org/10.1038/nrmicro1235
Article CAS PubMed Google Scholar
Arkhipova I.R., Yushenova I.A. 2019. Giant transposons in eukaryotes: Is bigger better? Genome Biol. Evol. 11 (3), 906–918. https://doi.org/10.1093/gbe/evz041
Article CAS PubMed PubMed Central Google Scholar
de Koning A.P., Gu W., Castoe T.A., Batzer M.A., Pollock D.D. 2011. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7 (12), e1002384. https://doi.org/10.1371/journal.pgen.1002384
Article CAS PubMed PubMed Central Google Scholar
Guo B., Zou M., Gan X., He S. 2010. Genome size evolution in pufferfish: An insight from BAC clone-based Diodon holocanthus genome sequencing. BMC Genomics. 11, 396. https://doi.org/10.1186/1471-2164-11-396
Article CAS PubMed PubMed Central Google Scholar
Muñoz-López M., García-Pérez J. L. 2010. DNA transposons: Nature and applications in genomics. Curr. Genom. 11 (2), 115–128. https://doi.org/10.2174/138920210790886871
Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., Mager D.L., Feschotte C. 2018. Ten things you should know about transposable elements. Genome Biol. 19 (1), 199. https://doi.org/10.1186/s13059-018-1577-z
Article CAS PubMed PubMed Central Google Scholar
Kojima K.K. 2020. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 94 (6), 233–252. https://doi.org/10.1266/ggs.18-00024
Article CAS PubMed Google Scholar
Gao B., Wang Y., Diaby M., Zong W., Shen D., Wang S., Chen C., Wang X., Song C. 2020. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mob. DNA. 11, 25. https://doi.org/10.1186/s13100-020-00220-0
Article CAS PubMed PubMed Central Google Scholar
Puzakov M.V., Puzakova L.V. 2022. Prevalence, diversity, and evolution of L18 (DD37E) transposons in the genomes of cnidarians. Mol. Biol. (Moscow). 56 (3), 424‒436. https://doi.org/10.1134/S0026893322030104
Claudianos C., Brownlie J., Russell R., Oakeshott J., Whyard S. 2002. maT—a clade of transposons intermediate between mariner and Tc1. Mol. Biol. Evol. 19 (12), 2101–2109. https://doi.org/10.1093/oxfordjournals.molbev.a004035
Article CAS PubMed Google Scholar
Zhang H.H., Shen Y.H., Xiong X.M., Han M.J., Zhang X.G. 2016. Identification and evolutionary history of the DD41D transposons in insects. Genes Genomics. 38, 109–117. https://doi.org/10.1007/s13258-015-0356-4
Tellier M., Bouuaert C.C., Chalmers R. 2015. Mariner and the ITm superfamily of transposons. Microbiol. Spectr. 3 (2), 753–772. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014
Shi S., Puzakov M., Guan Z., Xiang K., Diaby M., Wang Y., Wang S., Song C., Gao B. 2021. Prokaryotic and eukaryotic horizontal transfer of Sailor (DD82E), a new superfamily of IS630-Tc1-Mariner DNA-transposons. Biology (Basel). 10, 1005. https://doi.org/10.3390/biology10101005
Article CAS PubMed PubMed Central Google Scholar
Shi S., Puzakov M.V., Puzakova L.V., Ulupova Yu.N., Xiang K., Wang B., Gao B., Song Ch. 2023. Hiker, a new family of DNA transposons encoding transposases with DD35E motifs, displays a distinct phylogenetic relationship with most known DNA transposon families of IS630-Tc1-mariner (ITm). Mol. Phylogenet. Evol. 188, 107906. https://doi.org/10.1016/j.ympev.2023.107906
Article CAS PubMed Google Scholar
Puzakov M. V., Puzakova L.V. 2024. Structure and evolution of DNA transposons of the L31 superfamily in bivalves. Mol. Biol. (Moscow). 58 (1), 54‒72. https://doi.org/10.31857/S0026898424010051
Puzakova L.V., Puzakov M.V., Puzakova P.M. 2024. L31 transposons of Hexacorallia: Distribution, diversity, and evolution. Russ. J. Genet. 60 (6), 716–723. https://doi.org/10.1134/S1022795424700157
Liu Y., Zong W., Diaby M., Lin Z., Wang S., Gao B., Ji T., Song C. 2021. Diversity and evolution of pogo and Tc1/mariner transposons in the Apoidea genomes. Biology. 10 (9), 940. https://doi.org/10.3390/biology10090940
Article CAS PubMed PubMed Central Google Scholar
Tudor M., Lobocka M., Goodell M., Pettitt J., O’Hare K. 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232 (1), 126–134. https://doi.org/10.1007/BF00299145
Article CAS PubMed Google Scholar
Shao H.G., Tu Z.J. 2001. Expanding the diversity of the IS630-Tc1-mariner superfamily: Discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics. 159 (3), 1103–1115. https://doi.org/10.1093/genetics/159.3.1103
Article CAS PubMed PubMed Central Google Scholar
Dupeyron M., Baril T., Bass C., Hayward A. 2020. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob. DNA. 11, 21. https://doi.org/10.1186/s13100-020-00212-0
Article PubMed PubMed Central Google Scholar
Puzakov M.V., Puzakova L.V., Cheresiz S.V. 2018. An analysis of IS630/Tc1/mariner transposons in the genome of a pacific oyster Crassostrea gigas. J. Mol. Evol. 86 (8), 566–580. https://doi.org/10.1007/s00239-018-9868-2
Article CAS PubMed Google Scholar
Chow K.C., Tung W.L. 2000. Magnetic field exposure stimulates transposition through the induction of DnaK/J synthesis. Biochem. Biophys. Res. Commun. 270 (3), 745–748. https://doi.org/10.1006/bbrc.2000.2496
Article CAS PubMed Google Scholar
Vasilyeva L.A., Ratner V.A., Antonenko O.V., Lopukhova E.D., Bubenshchikova E.V., 2003. Induction of MGE 412 transposition in an isogenic strain of Drosophila melanogaster by different doses of ethanol fumes. Russ. J. Genet. 39 (5), 592–595.
Del Re B., Garoia F., Mesirca P. Agostini C., Bersani F., Giorgi G. 2003. Extremely low frequency magnetic fields affect transposition activity in Escherichia coli. Radiat. Environ. Biophys. 42 (2), 113–118. https://doi.org/10.1007/s00411-003-0192-9
Article CAS PubMed Google Scholar
Zakharenko L.P., Kovalenko L.V., Zakharov I.K., Perepelkina M.P. 2006. The effect of γ-radiation on induction of the hobo element transposition in Drosophila melanogaster. Russ. J. Genet. 42, 619–622. https://doi.org/10.1134/S1022795406060056
Vasilyeva L.A., Vikhristyuk O.V., Antonenko O.V., Zakharov I.K. 2008. Induction of mobile genetic elements transposition in Drosophila melanogaster genome by different stress factors. Inform. Vestn. VOGiS. 11, 662–671.
Cheresiz S.V., Yurchenko N.N., Ivannikov A.V., Zakharov I.K. 2008. Mobile elements and stress. Inform. Vestn. VOGiS. 12, 217–242.
Chalopin D., Naville M., Plard F., Galiana D., Volff J.-N. 2015. Comparative analysis of transposable elements highlights Mobilome diversity and evolution in vertebrates. Genome Biol. Evol. 7 (2), 567–580. https://doi.org/10.1093/gbe/evv005
Article CAS PubMed PubMed Central Google Scholar
Gao B., Shen D., Xue S., Chen C., Cui H., Song C. 2016. The contribution of transposable elements to size variations between four teleost genomes. Mob. DNA. (7), 1–16. https://doi.org/10.1186/s13100-016-0059-7
Petrov D.A. 2001. Evolution of genome size: new approaches to an old problem. Trends Genet. 17 (1), 23–28. https://doi.org/10.1016/s0168-9525(00)02157-0
Comments (0)