Michelson A., Todd A. 1955. Nucleotides part XXXII. Synthesis of a dithymidine dinucleotide containing a 3′: 5′-internucleotidic linkage. J. Chem. Soc. 2632‒2638.
Gilham P.T., Khorana H.G. 1958. Studies on polynucleotides. I. A new and general method for the chemical synthesis of the C5″–C3″ internucleotidic linkage. Syntheses of deoxyribo-dinucleotides. J. Am. Chem. Soc. 80 (23), 6212‒6222.
Reese C.B. 2005. Oligo- and poly-nucleotides: 50 years of chemical synthesis. Org. Biomol. Chem. 3 (21), 3851–3868.
Sinyakov A.N., Ryabinin V.A., Kostina E.V. 2021. Application of array-based oligonucleotides for synthesis of genetic designs. Mol. Biol. (Moscow). 55 (4), 487–500. https://doi.org/10.1134/S0026893321030109
Agarwal K.L., Büchi H., Caruthers M.H., Gupta N., Khorana H.G., Kleppe K., Kumar A., Ohtsuka E., Rajbhandary U.L., Van de Sande J.H., Sgaramella V., Weber H., Yamada T. 1970. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature. 227, 27–34.
Sekiya T., Takeya T., Brown E.L., Belagaje R., Contreras R., Fritz H.J., Gait M.J., Lees R.G., Ryan M.J., Khorana H.G., Norris K.E. 1979. Total synthesis of a tyrosine suppressor transfer RNA gene. XVI. Enzymatic joinings to form the total 207-base pair-long DNA. J. Biol. Chem. 254, 5787–5801.
Cello J., Paul A.V., Wimmer E. 2002. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science. 297, 1016–1018.
Smith H.O., Hutchison C.A.III, Pfannkoch C., Venter J.C. 2003. Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. U. S. A. 100 (26), 15440–15445.
CAS PubMed PubMed Central Google Scholar
Noyce R.S., Lederman S., Evans D.H. 2018. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One. 19 (13), e0188453.
Gibson D.G., Benders G.A., Andrews-Pfannkoch C., Denisova E.A., Baden-Tillson H., Zaveri J., Stockwell T.B., Brownley A., Thomas D.W., Algire M.A., Merryman C., Young L., Noskov V.N., Glass J.I., Venter J.C. Hutchison C.A. 3rd, Smith H.O. 2008. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 319, 1215–1220.
Gibson D.G., Glass J.I., Lartigue C., Noskov V.N., Chuang R.Y., Algire M.A., Benders G.A., Montague M.G., Ma L., Moodie M.M., Merryman C, Vashee S., Krishnakumar R., Assad-Garcia N., Andrews-Pfannkoch C., Hutchison C.A., 3rd, Smith H.O. 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 329, 52–56.
Venetz J.E., Medico L.D., Wölfle A., Schächle P., Bucher Y., Appert D., Tschan F., Flores-Tinoco C.E., van Kooten M., Guennoun R., Deutsch S., Christen M., Christen B. 2019. Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality. Proc. Natl. Acad. Sci. U. S. A. 116 (16), 8070–8079.
CAS PubMed PubMed Central Google Scholar
Filges S., Mouhanna P., Ståhlberg A. 2021. Digital quantification of chemical oligonucleotide synthesis errors. Clin. Chem. 67 (10), 1384–1394.
Caruthers M. 1985. Gene synthesis machines: DNA chemistry and its uses. Science. 230 (4723), 281–285.
Eckstein F. 1991. Oligonucleotides and analogues: a practical approach. IRL Press.
Ellington A., Pollard J.D.Jr. 2001. Introduction to the synthesis and purification of oligonucleotides. Curr. Protoc. Nucleic Acid Chem. Appendix 3C.
Jensen M.A., Davis R.W. 2018. Template-independent enzymatic oligonucleotide synthesis (TiEOS): Its history, prospects, and challenges. Biochemistry. 57 (12), 1821–1832.
Pichon M., Hollenstein M. 2024. Controlled enzymatic synthesis of oligonucleotides. Commun. Chem. 7, 138.
CAS PubMed PubMed Central Google Scholar
Verardo D., Adelizzi B., Rodriguez-Pinzon D.A., Moghaddam N., Thomée E., Loman T., Godron X., Horgan A. 2023. Multiplex enzymatic synthesis of DNA with single-base resolution. Sci. Adv. 9 (27), eadi0263.
Eisenstein M. 2020. Enzymatic DNA synthesis enters new phase. Nat. Biotechnol. 38, 1113–1115.
Amazon Prime for DNA—Has A New Era of Oligonucleotide Synthesis Begun? Oligonucleotide Therapeutics Society. https://www.oligotherapeutics.org/amazon-prime-for-dna-has-a-new-era-of-oligonucleotide-synthesis-begun/.
Ma S., Saaem I., Tian J. 2012. Error correction in gene synthesis technology. Trends Biotechnol. 30 (3), 147–154.
Sinha N.D., Jung K.E. 2015. Analysis and purification of synthetic nucleic acids using HPLC. Curr. Protoc. Nucleic Acid Chem. 61, 10.5.1–10.5.39.
Fang S.Y., Fueangfung S. 2010. Scalable synthetic oligodeoxynucleotide purification with use of a catching by polymerization, washing, and releasing approach. Org. Lett. 12, 3720−3723.
Pokharel D., Fang S. 2014. A highly convenient procedure for oligodeoxynucleotide purification. Open Org. Chem. J. 8, 15–18.
Fang S., Arneson R., Yin Y., Yuan Y. 2024. De novo synthesis of error-free long oligos. Curr. Protoc. 4 (10), e70028.
Pokharel D., Fang S.Y. 2016. Polymerizable phosphoramidites with an acid-cleavable linker for eco-friendly synthetic oligodeoxynucleotide purification. Green Chem. 18, 1125–1136.
Eriyagama D., Shahsavari S., Halami B., Lu B.Y., Wei F., Fang S. 2018. Parallel, large-scale, and long synthetic oligodeoxynucleotide purification using the catching full-length sequence by polymerization technique. Org. Process Res. Dev. 22, 1282‒1288.
CAS PubMed PubMed Central Google Scholar
Jensen M., Davis R. 2017. RecJ 5′ exonuclease digestion of oligonucleotide failure strands: A “Green” method of Trityl-On purification. Biochemistry. 56 (18), 2417–2424.
Lietard J., Leger A., Erlich Y., Sadowski N., Timp W., Somoza M.M. 2021. Chemical and photochemical error rates in light-directed synthesis of complex DNA libraries. Nucleic Acids Res. 49 (12), 6687−6701.
CAS PubMed PubMed Central Google Scholar
Zhou X., Cai S., Hong A., You Q., Yu P., Sheng N., Srivannavit O., Muranjan S., Rouillard J.M., Xia Y., Zhang X., Xiang Q., Ganesh R., Zhu Q., Matejko A., Gulari E., Gao X. 2004. Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Res. 32, 5409–5417.
CAS PubMed PubMed Central Google Scholar
Tian J., Gong H., Sheng N., Zhou X., Gulari E., Gao X., Church G. 2004. Accurate multiplex gene synthesis from programmable DNA microchips. Nature. 432, 1050–1054.
Church G.M., Tian J. 2005. WO Patent No. 2005/089110 A2. Geneva: Switzerland World Intellectual Property Organization International Bureau.
Church G.M., Tian J. 2006. US Patent No. 2006/0127920 A1. Washington, DC: U.S. Patent and Trademark Office.
Borovkov A.Y., Loskutov A.V., Robida M.D., Day K.M., Cano J.A., Olson T.L., Patel H., Brown K., Hunter P.D., Sykes K.F. 2010. High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides. Nucleic Acids Res. 38 (19), e180.
PubMed PubMed Central Google Scholar
Sun H.H., Zhu C., Wu Y., Guo J.-F. 2009. De novo synthesis and assembly of multiplex riboswitches in vitro. Biotechnol. Prog. 25 (5), 1228–1235.
Hsiau T.H.-C., Sukovich D., Elms P., Prince R.N., Stritmatter T., Ruan P., Curry B., Anderson P., Sampson J., Anderson J.C. 2015. A method for multiplex gene synthesis employing error correction based on expression. PLoS One. 10 (3), e0119927.
PubMed PubMed Central Google Scholar
Matzas M., Stähler P.F., Kefer N., Siebelt N., Boisguérin V., Leonard J.T., Keller A., Stähler C.F., Häberle P., Gharizadeh B., Babrzadeh F., Church G.M. 2010. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat. Biotechnol. 28 (12), 1291–1294.
CAS PubMed PubMed Central Google Scholar
Stähler P.F., Carapito R., Stähler C.F., Malzas M., Leonard J.T., Jäger J., Beier M. 2010. WO Patent No. 2010/094772 Al. Geneva: Switzerland World Intellectual Property Organization International Bureau.
Stähler P.F., Carapito R., Stähler C.F., Malzas M., Leonard J.T., Jäger J., Beier M. 2018. US Patent No. US 2017/0267999 A1. Washington, DC: U.S. Patent and Trademark Office.
Lee H., Kim H., Kim S., Ryu T., Kim H., Kwon D.B.S. 2015. A high-throughput optomechanical retrieval method for sequence-verified clonal DNA from the NGS platform. Nat. Commun. 6, 6073.
Bang D., Kim H., N., Lim H., Park S., Han H. 2020. US Patent No. 10526640 B2. Washington, DC: U.S. Patent and Trademark Office.
Cho N., Seo H.N., Ryu T., Kwon E., Huh S., Noh J., Yeom H., Byungjin Hwang B., Ha H., Lee J.H., Kwon S., Bang D. 2018. High-throughput construction of multiple cas9 gene variants via assembly of high-depth tiled and sequence-verified oligonucleotides. Nucleic Acids Res. 46 (9), e55.
PubMed PubMed Central Google Scholar
Yeom H., Ryu T., Lee A.C., Noh J., Lee H., Choi Y., Kim N., Kwon S. 2020. Cell-free bacteriophage genome synthesis using low-cost sequence-verified array-synthesized oligonucleotides. ACS Synth. Biol. 9 (6), 1376–1384.
Smith J.D., Schlecht U., Xu W., Suresh S., Horecka J., Proctor M.J., Aiyar R.S., Bennett R.A., Chu A., Li Y.F., Roy K., Davis R.W., Steinmetz L.M., Hyman R.W., Levy S.F., St Onge R.P. 2017. A method for high-throughput production of sequence-verified DNA libraries and strain collections. Mol. Syst. Biol. 13 (2), 913.
Comments (0)