Orphanides G., Reinberg D. 2002. A unified theory of gene expression. Cell. 108, 439‒451.
van Bemmel J.G., Pagie L., Braunschweig U., Brugman W., Meuleman W., Kerkhoven R.M., van Steensel B. 2010. The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLoS One. 5, e15013.
PubMed PubMed Central Google Scholar
Rando O.J., Chang H.Y. 2009. Genome-wide views of chromatin structure. Annu. Rev. Biochem. 78, 245‒271.
CAS PubMed PubMed Central Google Scholar
Tchurikov N.A., Krasnov A.N., Ponomarenko N.A., Golova Y.B., Chernov B.K. 1998. Forum domain in Drosophila melanogaster cut locus possesses looped domains inside. Nucleic Acids Res. 26, 3221‒3227.
CAS PubMed PubMed Central Google Scholar
Mechali M. 2010. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat. Rev. Mol. Cell Biol. 11, 728‒738.
Masai H., Matsumoto S., You Z., Yoshizawa-Sugata N., Oda M. 2010. Eukaryotic chromosome DNA replication: Where, when, and how? Annu. Rev. Biochem. 79, 89‒130.
MacAlpine H.K., Gordan R., Powell S.K., Hartemink A.J., MacAlpine D.M. 2010. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201‒211.
CAS PubMed PubMed Central Google Scholar
Deal R.B., Henikoff J.G., Henikoff S. 2010. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science. 328, 1161‒1164.
CAS PubMed PubMed Central Google Scholar
Euskirchen G.M., Auerbach R.K., Davidov E., Gianoulis T.A., Zhong G., Rozowsky J., Bhardwaj N., Gerstein M.B., Snyder M. 2011. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet. 7, e1002008.
CAS PubMed PubMed Central Google Scholar
Eaton M.L., Prinz J.A., MacAlpine H.K., Tretyakov G., Kharchenko P.V., MacAlpine D.M. 2011. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164‒174.
CAS PubMed PubMed Central Google Scholar
MacAlpine D.M., Rodriguez H.K., Bell S.P. 2004. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094‒3105.
CAS PubMed PubMed Central Google Scholar
Balasov M., Huijbregts R.P., Chesnokov I. 2007. Role of the Orc6 protein in origin recognition complex-dependent DNA binding and replication in Drosophila melanogaster. Mol. Cell Biol. 27, 3143‒3153.
CAS PubMed PubMed Central Google Scholar
Kim J.C., Nordman J., Xie F., Kashevsky H., Eng T., Li S., MacAlpine D.M., Orr-Weaver T.L. 2011. Integrative analysis of gene amplification in Drosophila follicle cells: Parameters of origin activation and repression. Genes Dev. 25, 1384‒1398.
CAS PubMed PubMed Central Google Scholar
Mazina M., Vorob’eva N.E., Krasnov A.N. 2013. Ability of Su(Hw) to create a platform for ORC binding does not depend on the type of surrounding chromatin. Tsitologiia. 55, 218‒224.
Vorobyeva N.E., Erokhin M., Chetverina D., Krasnov A.N., Mazina M.Y. 2021. Su(Hw) primes 66D and 7F Drosophila chorion genes loci for amplification through chromatin decondensation. Sci. Rep. 11, 16963.
CAS PubMed PubMed Central Google Scholar
Vorobyeva N.E., Krasnov A.N., Erokhin M., Chetverina D., Mazina M. 2024. Su(Hw) interacts with Combgap to establish long-range chromatin contacts. Epigenetics Chromatin. 17, 17.
CAS PubMed PubMed Central Google Scholar
Fursova N.A., Nikolenko J.V., Soshnikova N.V., Mazina M.Y., Vorobyova N.E., Krasnov A.N. 2018. Zinc finger protein CG9890—new component of ENY2-containing complexes of Drosophila. Acta Naturae. 10, 110‒114.
CAS PubMed PubMed Central Google Scholar
Nikolenko J.V., Kurshakova M.M., Kopytova D.V., Vdovina Y.A., Vorobyova N.E., Krasnov A.N. 2024. The Drosophila zinc finger proteins Aef1 and CG10543 are co-localized with SAGA, SWI/SNF, and ORC complexes on gene promoters and involved in transcription regulation. Mol. Biol. (Moscow). 58 (4), 700‒707. https://doi.org/10.1134/S0026893324700286
Nikolenko J.V., Kurshakova M.M., Kopytova D.V., Vdovina Y.A., Vorobyova N.E., Krasnov A.N. 2024. The Drosophila zinc finger protein CG9609 interacts with the deubiquitinating (DUB) module of the SAGA complex and participates in the regulation of transcription. Mol. Biol. (Moscow). 58, 693–699. https://doi.org/10.1134/S0026893324700274
Thummel C.S. 1996. Flies on steroids—Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet. 12, 306‒310.
Ou Q., King-Jones K. 2013. What goes up must come down: Transcription factors have their say in making ecdysone pulses. Curr. Top. Dev. Biol. 103, 35‒71.
Shlyueva D., Stelzer C., Gerlach D., Yanez-Cuna J.O., Rath M., Boryn L.M., Arnold C.D., Stark A. 2014. Hormone-responsive enhancer-activity maps reveal predictive motifs, indirect repression, and targeting of closed chromatin. Mol. Cell. 54, 180‒192.
Mazina M.Y., Kovalenko E.V., Derevyanko P.K., Nikolenko J.V., Krasnov A.N., Vorobyeva N.E. 2018. One signal stimulates different transcriptional activation mechanisms. Biochim. Biophys. Acta. 1861, 178‒189.
Mazina M.Y., Nikolenko J.V., Fursova N.A., Nedil’ko P.N., Krasnov A.N., Vorobyeva N.E. 2015. Early-late genes of the ecdysone cascade as models for transcriptional studies. Cell Cycle. 14, 3593‒3601.
CAS PubMed PubMed Central Google Scholar
Mazina M.Y., Kocheryzhkina E.V., Nikolenko J.V., Krasnov A.N., Georgieva S.G., Vorobyeva N.E. 2017. Nuclear receptors EcR, Usp, E75, DHR3, and ERR regulate transcription of ecdysone cascade genes. Dokl. Biochem. Biophys. 473, 145‒147.
Krasnov A.N., Evdokimova A.A., Mazina M.Y., Erokhin M., Chetverina D., Vorobyeva N.E. 2023. Coregulators reside within Drosophila ecdysone-inducible loci before and after ecdysone treatment. Int. J. Mol. Sci. 24 (14), 11844.
CAS PubMed PubMed Central Google Scholar
Cheng D., Dong Z., Lin P., Shen G., Xia Q. 2022. Transcriptional activation of ecdysone-responsive genes requires H3K27 acetylation at enhancers. Int. J. Mol. Sci. 23 (18), 10791.
CAS PubMed PubMed Central Google Scholar
Trapnell C., Hendrickson D.G., Sauvageau M., Goff L., Rinn J.L., Pachter L. 2013. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46‒53.
Ramirez F., Ryan D.P., Gruning B., Bhardwaj V., Kilpert F., Richter A.S., Heyne S., Dundar F., Manke T. 2016. DeepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160‒165.
McKay D.J., Lieb J.D. 2013. A common set of DNA regulatory elements shapes Drosophila appendages. Dev. Cell. 27, 306‒318.
Bag I., Chen S., Rosin L.F., Chen Y., Liu C.Y., Yu G.Y., Lei E.P. 2021. M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity. Nat. Commun. 12, 4170.
CAS PubMed PubMed Central Google Scholar
Sabirov M., Popovich A., Boyko K., Nikolaeva A., Kyrchanova O., Maksimenko O., Popov V., Georgiev P., Bonchuk A. 2021. Mechanisms of CP190 interaction with architectural proteins in Drosophila melanogaster. Int. J. Mol. Sci. 22 (22), 12400.
CAS PubMed PubMed Central Google Scholar
Chen D., Lei E.P. 2019. Function and regulation of chromatin insulators in dynamic genome organization. Curr. Opin. Cell Biol. 58, 61‒68.
CAS PubMed PubMed Central Google Scholar
Kahn T.G., Savitsky M., Kuong C., Jacquier C., Cavalli G., Chang J.M., Schwartz Y.B. 2023. Topological screen identifies hundreds of Cp190- and CTCF-dependent Drosophila chromatin insulator elements. Sci. Adv. 9, eade0090.
Cavalheiro G.R., Girardot C., Viales R.R., Pollex T., Cao T.B.N., Lacour P., Feng S., Rabinowitz A., Furlong E.E.M. 2023. CTCF, BEAF-32, and CP190 are not required for the establishment of TADs in early Drosophila embryos but have locus-specific roles. Sci. Adv. 9, eade1085.
Kaushal A., Dorier J., Wang B., Mohana G., Taschner M., Cousin P., Waridel P., Iseli C., Semenova A., Restrepo S., Guex N., Aiden E.L., Gambetta M.C. 2022. Essential role of Cp190 in physical and regulatory boundary formation. Sci. Adv. 8, eabl8834.
Mazina M.Y., Ziganshin R.H., Magnitov M.D., Golovnin A.K., Vorobyeva N.E. 2020. Proximity-dependent biotin labelling reveals CP190 as an EcR/Usp molecular partner. Sci. Rep. 10, 4793.
Comments (0)