CG10543 Protein Is Involved in the Regulation of Transcription of Ecdysone-Dependent Genes

Orphanides G., Reinberg D. 2002. A unified theory of gene expression. Cell. 108, 439‒451.

CAS  PubMed  Google Scholar 

van Bemmel J.G., Pagie L., Braunschweig U., Brugman W., Meuleman W., Kerkhoven R.M., van Steensel B. 2010. The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLoS One. 5, e15013.

PubMed  PubMed Central  Google Scholar 

Rando O.J., Chang H.Y. 2009. Genome-wide views of chromatin structure. Annu. Rev. Biochem. 78, 245‒271.

CAS  PubMed  PubMed Central  Google Scholar 

Tchurikov N.A., Krasnov A.N., Ponomarenko N.A., Golova Y.B., Chernov B.K. 1998. Forum domain in Drosophila melanogaster cut locus possesses looped domains inside. Nucleic Acids Res. 26, 3221‒3227.

CAS  PubMed  PubMed Central  Google Scholar 

Mechali M. 2010. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat. Rev. Mol. Cell Biol. 11, 728‒738.

CAS  PubMed  Google Scholar 

Masai H., Matsumoto S., You Z., Yoshizawa-Sugata N., Oda M. 2010. Eukaryotic chromosome DNA replication: Where, when, and how? Annu. Rev. Biochem. 79, 89‒130.

CAS  PubMed  Google Scholar 

MacAlpine H.K., Gordan R., Powell S.K., Hartemink A.J., MacAlpine D.M. 2010. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201‒211.

CAS  PubMed  PubMed Central  Google Scholar 

Deal R.B., Henikoff J.G., Henikoff S. 2010. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science. 328, 1161‒1164.

CAS  PubMed  PubMed Central  Google Scholar 

Euskirchen G.M., Auerbach R.K., Davidov E., Gianoulis T.A., Zhong G., Rozowsky J., Bhardwaj N., Gerstein M.B., Snyder M. 2011. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet. 7, e1002008.

CAS  PubMed  PubMed Central  Google Scholar 

Eaton M.L., Prinz J.A., MacAlpine H.K., Tretyakov G., Kharchenko P.V., MacAlpine D.M. 2011. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164‒174.

CAS  PubMed  PubMed Central  Google Scholar 

MacAlpine D.M., Rodriguez H.K., Bell S.P. 2004. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094‒3105.

CAS  PubMed  PubMed Central  Google Scholar 

Balasov M., Huijbregts R.P., Chesnokov I. 2007. Role of the Orc6 protein in origin recognition complex-dependent DNA binding and replication in Drosophila melanogaster. Mol. Cell Biol. 27, 3143‒3153.

CAS  PubMed  PubMed Central  Google Scholar 

Kim J.C., Nordman J., Xie F., Kashevsky H., Eng T., Li S., MacAlpine D.M., Orr-Weaver T.L. 2011. Integrative analysis of gene amplification in Drosophila follicle cells: Parameters of origin activation and repression. Genes Dev. 25, 1384‒1398.

CAS  PubMed  PubMed Central  Google Scholar 

Mazina M., Vorob’eva N.E., Krasnov A.N. 2013. Ability of Su(Hw) to create a platform for ORC binding does not depend on the type of surrounding chromatin. Tsitologiia. 55, 218‒224.

CAS  PubMed  Google Scholar 

Vorobyeva N.E., Erokhin M., Chetverina D., Krasnov A.N., Mazina M.Y. 2021. Su(Hw) primes 66D and 7F Drosophila chorion genes loci for amplification through chromatin decondensation. Sci. Rep. 11, 16963.

CAS  PubMed  PubMed Central  Google Scholar 

Vorobyeva N.E., Krasnov A.N., Erokhin M., Chetverina D., Mazina M. 2024. Su(Hw) interacts with Combgap to establish long-range chromatin contacts. Epigenetics Chromatin. 17, 17.

CAS  PubMed  PubMed Central  Google Scholar 

Fursova N.A., Nikolenko J.V., Soshnikova N.V., Mazina M.Y., Vorobyova N.E., Krasnov A.N. 2018. Zinc finger protein CG9890—new component of ENY2-containing complexes of Drosophila. Acta Naturae. 10, 110‒114.

CAS  PubMed  PubMed Central  Google Scholar 

Nikolenko J.V., Kurshakova M.M., Kopytova D.V., Vdovina Y.A., Vorobyova N.E., Krasnov A.N. 2024. The Drosophila zinc finger proteins Aef1 and CG10543 are co-localized with SAGA, SWI/SNF, and ORC complexes on gene promoters and involved in transcription regulation. Mol. Biol. (Moscow). 58 (4), 700‒707. https://doi.org/10.1134/S0026893324700286

CAS  Google Scholar 

Nikolenko J.V., Kurshakova M.M., Kopytova D.V., Vdovina Y.A., Vorobyova N.E., Krasnov A.N. 2024. The Drosophila zinc finger protein CG9609 interacts with the deubiquitinating (DUB) module of the SAGA complex and participates in the regulation of transcription. Mol. Biol. (Moscow). 58, 693–699. https://doi.org/10.1134/S0026893324700274

CAS  Google Scholar 

Thummel C.S. 1996. Flies on steroids—Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet. 12, 306‒310.

CAS  PubMed  Google Scholar 

Ou Q., King-Jones K. 2013. What goes up must come down: Transcription factors have their say in making ecdysone pulses. Curr. Top. Dev. Biol. 103, 35‒71.

CAS  PubMed  Google Scholar 

Shlyueva D., Stelzer C., Gerlach D., Yanez-Cuna J.O., Rath M., Boryn L.M., Arnold C.D., Stark A. 2014. Hormone-responsive enhancer-activity maps reveal predictive motifs, indirect repression, and targeting of closed chromatin. Mol. Cell. 54, 180‒192.

CAS  PubMed  Google Scholar 

Mazina M.Y., Kovalenko E.V., Derevyanko P.K., Nikolenko J.V., Krasnov A.N., Vorobyeva N.E. 2018. One signal stimulates different transcriptional activation mechanisms. Biochim. Biophys. Acta. 1861, 178‒189.

CAS  Google Scholar 

Mazina M.Y., Nikolenko J.V., Fursova N.A., Nedil’ko P.N., Krasnov A.N., Vorobyeva N.E. 2015. Early-late genes of the ecdysone cascade as models for transcriptional studies. Cell Cycle. 14, 3593‒3601.

CAS  PubMed  PubMed Central  Google Scholar 

Mazina M.Y., Kocheryzhkina E.V., Nikolenko J.V., Krasnov A.N., Georgieva S.G., Vorobyeva N.E. 2017. Nuclear receptors EcR, Usp, E75, DHR3, and ERR regulate transcription of ecdysone cascade genes. Dokl. Biochem. Biophys. 473, 145‒147.

CAS  PubMed  Google Scholar 

Krasnov A.N., Evdokimova A.A., Mazina M.Y., Erokhin M., Chetverina D., Vorobyeva N.E. 2023. Coregulators reside within Drosophila ecdysone-inducible loci before and after ecdysone treatment. Int. J. Mol. Sci. 24 (14), 11844.

CAS  PubMed  PubMed Central  Google Scholar 

Cheng D., Dong Z., Lin P., Shen G., Xia Q. 2022. Transcriptional activation of ecdysone-responsive genes requires H3K27 acetylation at enhancers. Int. J. Mol. Sci. 23 (18), 10791.

CAS  PubMed  PubMed Central  Google Scholar 

Trapnell C., Hendrickson D.G., Sauvageau M., Goff L., Rinn J.L., Pachter L. 2013. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46‒53.

CAS  PubMed  Google Scholar 

Ramirez F., Ryan D.P., Gruning B., Bhardwaj V., Kilpert F., Richter A.S., Heyne S., Dundar F., Manke T. 2016. DeepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160‒165.

Google Scholar 

McKay D.J., Lieb J.D. 2013. A common set of DNA regulatory elements shapes Drosophila appendages. Dev. Cell. 27, 306‒318.

CAS  PubMed  Google Scholar 

Bag I., Chen S., Rosin L.F., Chen Y., Liu C.Y., Yu G.Y., Lei E.P. 2021. M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity. Nat. Commun. 12, 4170.

CAS  PubMed  PubMed Central  Google Scholar 

Sabirov M., Popovich A., Boyko K., Nikolaeva A., Kyrchanova O., Maksimenko O., Popov V., Georgiev P., Bonchuk A. 2021. Mechanisms of CP190 interaction with architectural proteins in Drosophila melanogaster. Int. J. Mol. Sci. 22 (22), 12400.

CAS  PubMed  PubMed Central  Google Scholar 

Chen D., Lei E.P. 2019. Function and regulation of chromatin insulators in dynamic genome organization. Curr. Opin. Cell Biol. 58, 61‒68.

CAS  PubMed  PubMed Central  Google Scholar 

Kahn T.G., Savitsky M., Kuong C., Jacquier C., Cavalli G., Chang J.M., Schwartz Y.B. 2023. Topological screen identifies hundreds of Cp190- and CTCF-dependent Drosophila chromatin insulator elements. Sci. Adv. 9, eade0090.

Cavalheiro G.R., Girardot C., Viales R.R., Pollex T., Cao T.B.N., Lacour P., Feng S., Rabinowitz A., Furlong E.E.M. 2023. CTCF, BEAF-32, and CP190 are not required for the establishment of TADs in early Drosophila embryos but have locus-specific roles. Sci. Adv. 9, eade1085.

Kaushal A., Dorier J., Wang B., Mohana G., Taschner M., Cousin P., Waridel P., Iseli C., Semenova A., Restrepo S., Guex N., Aiden E.L., Gambetta M.C. 2022. Essential role of Cp190 in physical and regulatory boundary formation. Sci. Adv. 8, eabl8834.

Mazina M.Y., Ziganshin R.H., Magnitov M.D., Golovnin A.K., Vorobyeva N.E. 2020. Proximity-dependent biotin labelling reveals CP190 as an EcR/Usp molecular partner. Sci. Rep. 10, 4793.

Comments (0)

No login
gif