Issa S.S., Shaimardanova A.A., Solovyeva V.V., Rizvanov A.A. 2023. Various AAV serotypes and their applications in gene therapy: An overview. Cells. 12, 785.
CAS PubMed PubMed Central Google Scholar
Wang D., Tai P.W.L., Gao G. 2019. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discovery. 18, 358‒378.
McCarty D.M. 2008. Self-complementary AAV vectors; advances and applications. Mol. Ther. 16, 1648‒1656.
Lunev E., Karan A., Egorova T., Bardina M. 2022. Adeno-associated viruses for modeling neurological diseases in animals: Achievements and prospects. Biomedicines. 10, 1140.
CAS PubMed PubMed Central Google Scholar
Li C., Samulski R.J. 2020. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255‒272.
Brommel C.M., Cooney A.L., Sinn P.L. 2020. Adeno-associated virus-based gene therapy for lifelong correction of genetic disease. Hum. Gene Ther. 31, 985‒995.
CAS PubMed PubMed Central Google Scholar
Pupo A., Fernández A., Low S.H., François A., Suárez-Amarán L., Samulski R.J. 2022. AAV vectors: The Rubik’s cube of human gene therapy. Mol. Ther. 30, 3515‒3541.
CAS PubMed PubMed Central Google Scholar
Wang J.H., Gessler D., Zhan W., Gallagher L., Gao G. 2024. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduction Target Ther. 9, 78.
Ayuso E, Mingozzi F, Bosch F. 2010. Production, purification and characterization of adeno-associated vectors. Curr. Gene Ther. 10, 423‒436.
Guan J.S., Chen K., Si Y., Kim T., Zhou Z., Kim S., Zhou L., Liu X.M. 2022. Process improvement of adeno-associated virus (AAV) production. Front. Chem. Eng. 4, 830421.
PubMed PubMed Central Google Scholar
Kimura T., Ferran B., Tsukahara Y., Shang Q., Desai S., Fedoce A., Pimentel D.R., Luptak I., Adachi T., Ido Y., Matsui R., Bachschmid M.M. 2019. Production of adeno-associated virus vectors for in vitro and in vivo applications. Sci. Rep. 9, 13601.
PubMed PubMed Central Google Scholar
Vorobyev P.O., Kochetkov D.V., Vasilenko K.V., Lipatova A.V. 2022. Comparative efficiency of accessible transfection methods in model cell lines for biotechnological applications. Bull. RSMU. 3, 11–18. https://doi.org/10.24075/brsmu.2022.031
Zhao H., Lee K.J., Daris M., Lin Y., Wolfe T., Sheng J., Plewa C., Wang S., Meisen W.H. 2020. Creation of a high-yield AAV vector production platform in suspension cells using a design-of-experiment approach. Mol. Ther. Methods Clin. Dev. 18, 312‒320.
CAS PubMed PubMed Central Google Scholar
Aurnhammer C., Haase M., Muether N., Hausl M., Rauschhuber C., Huber I., Nitschko H., Busch U., Sing A., Ehrhardt A., Baiker A. 2012. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum. Gene Ther. Methods. 23, 18‒28.
Bennett A., Mietzsch M., Agbandje-McKenna M. 2017. Understanding capsid assembly and genome packaging for adeno-associated viruses. Future Virol. 12, 283‒297.
CAS PubMed PubMed Central Google Scholar
Guan J.S., Chen K., Si Y., Kim T., Zhou Z., Kim S., Zhou L., Liu X.M. 2022. Process improvement of adeno-associated virus (AAV) production. Front. Chem. Eng. 4, 830421.
PubMed PubMed Central Google Scholar
Ohba K., Mizukami H. 2023. Protocol for producing an adeno-associated virus vector by controlling capsid expression timing. STAR Protoc. 4, 102542.
CAS PubMed PubMed Central Google Scholar
Yang J., Zhou W., Zhang Y., Zidon T., Ritchie T., Engelhardt J.F. 1999. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J. Virol. 73, 9468‒9477.
CAS PubMed PubMed Central Google Scholar
Grieger J.C., Soltys S.M., Samulski R.J. 2016. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol. Ther. 24, 287‒297.
Chaudhry M.A., Vitalis T.Z., Bowen B.D., Piret J.M. 2008. Basal medium composition and serum or serum replacement concentration influences on the maintenance of murine embryonic stem cells. Cytotechnology. 58, 173‒179.
Comments (0)