Rani V., Deep G., Singh R.K., Palle K., Yadav U.C.S. 2016. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 148, 183–193. https://doi.org/10.1016/j.lfs.2016.02.002
Article CAS PubMed Google Scholar
Kyriakis J.M., Avruch J. 2012. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol. Rev. 92, 689–737. https://doi.org/10.1152/physrev.00028.2011
Article CAS PubMed Google Scholar
Schieber M., Chandel N.S. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462. https://doi.org/10.1016/j.cub.2014.03.034
Article CAS PubMed PubMed Central Google Scholar
Bedard K., Krause K.-H. 2007. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 87, 245–313. https://doi.org/10.1152/physrev.00044.2005
Article CAS PubMed Google Scholar
Donath M.Y., Shoelson S.E. 2011. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107. https://doi.org/10.1038/nri2925
Article CAS PubMed Google Scholar
Walport M.J. 2001. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066. https://doi.org/10.1056/NEJM200104053441406
Article CAS PubMed Google Scholar
Sahu A., Lambris J.D. 2001. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol. Rev. 180, 35–48. https://doi.org/10.1034/j.1600-065x.2001.1800103.x
Article CAS PubMed Google Scholar
Ricklin D., Hajishengallis G., Yang K., Lambris J.D. 2010. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785‒797. https://doi.org/10.1038/ni.1923
Article CAS PubMed PubMed Central Google Scholar
Mogilenko D.A., Danko K., Larionova E.E., Shavva V.S., Kudriavtsev I.V., Nekrasova E.V., Burnusuz A.V., Gorbunov N.P., Trofimov A.V., Zhakhov A.V., Ivanov I.A., Orlov S.V. 2022. Differentiation of human macrophages with anaphylatoxin C3a impairs alternative M2 polarization and decreases lipopolysaccharide-induced cytokine secretion. Immunol. Cell. Biol. 100, 186‒204. https://doi.org/10.1111/imcb.12534
Article CAS PubMed Google Scholar
Barbu A., Hamad O.A., Lind L., Ekdahl K.N., Nilsson B. 2015. The role of complement factor C3 in lipid metabolism. Mol. Immunol. 67, 101–107. https://doi.org/10.1016/j.molimm.2015.02.027
Article CAS PubMed Google Scholar
Muscari A., Massarelli G., Bastagli L., Poggiopollini G., Tomassetti V., Drago G., Martignani C., Pacilli P., Boni P., Puddu P. 2000. Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men. Eur. Heart J. 21, 1081–1090. https://doi.org/10.1053/euhj.1999.2013
Article CAS PubMed Google Scholar
Hertle E., Van Greevenbroek M.M.J., Stehouwer C.D.A. 2012. Complement C3: An emerging risk factor in cardiometabolic disease. Diabetologia. 55, 881–884. https://doi.org/10.1007/s00125-012-2462-z
Article CAS PubMed PubMed Central Google Scholar
Clarke H.G., Freeman T., Pryse-Phillips W. 1971. Serum protein changes after injury. Clin. Sci. 40, 337‒344. https://doi.org/10.1042/cs0400337
Article CAS PubMed Google Scholar
Alper C.A., Johnson A.M., Birtch A.G., Moore F.D. 1969. Human C3: Evidence for the liver as the primary site of synthesis. Science. 163, 286–288. https://doi.org/10.1126/science.163.3864.286
Article CAS PubMed Google Scholar
Einstein L.P., Hansen P.J., Ballow M., Davis A.E. 3rd, Davis J.S. 4th, Alper C.A., Rosen F.S., Colten H.R. 1977. Biosynthesis of the third component of complement (C3) in vitro by monocytes from both normal and homozygous C3-deficient humans. J. Clin. Invest. 60, 963–969. https://doi.org/10.1172/JCI108876
Article CAS PubMed PubMed Central Google Scholar
Warren H.B., Pantazis P., Davies P.F. 1987. The third component of complement is transcribed and secreted by cultured human endothelial cells. Am. J. Pathol. 129, 9–13.
CAS PubMed PubMed Central Google Scholar
Lévi-Strauss M., Mallat M. 1987. Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. J. Immunol. 139, 2361–2366.
Choy L.N., Rosen B.S., Spiegelman B.M. 1992. Adipsin and an endogenous pathway of complement from adipose cells. J. Biol. Chem. 267, 12736–12741. https://doi.org/10.1016/S0021-9258(18)42338-1
Article CAS PubMed Google Scholar
Volanakis J.E. 1995. Transcriptional regulation of complement genes. Annu. Rev. Immunol. 12, 277–305. https://doi.org/10.1146/annurev.iy.13.040195.001425
Mogilenko D.A., Kudriavtsev I.V., Shavva V.S., Dizhe E.B., Vilenskaya G., Efremov A.M., Perevozchikov A.P., Orlov S.V. 2013. Peroxisome proliferator-activated receptor α positively regulates complement C3 expression but inhibits tumor necrosis factor α-mediated activation of C3 gene in mammalian hepatic-derived cells. J. Biol. Chem. 288, 1726–1738. https://doi.org/10.1074/jbc.M112.437525
Article CAS PubMed Google Scholar
Shavva V.S., Mogilenko D.A., Dizhe E.B., Oleinikova G.N., Perevozchikov A.P., Orlov S.V. 2013. Hepatic nuclear factor 4a positively regulates complement C3 expression and does not interfere with TNFα-mediated stimulation of C3 expression in HepG2 cells. Gene. 524, 187‒192. https://doi.org/10.1016/j.gene.2013.04.036
Article CAS PubMed Google Scholar
Shavva V.S., Bogomolova A.M., Efremov A.M., Trofimov A.N., Nikitin A.A., Babina A.V., Nekrasova E.V., Dizhe E.B., Oleinikova G.N., Missyul B.V., Orlov S.V. 2018. Insulin downregulates C3 gene expression in human HepG2 cells through activation of PPARγ. Eur. J. Cell. Biol. 97, 204‒215. https://doi.org/10.1016/j.ejcb.2018.03.001
Article CAS PubMed Google Scholar
Mogilenko D.A., Kudriavtsev I.V., Trulioff A.S., Shavva V.S., Dizhe E.B., Missyul B.V., Zhakhov A.V., Ischenko A.M., Perevozchikov A.P., Orlov S.V. 2012. Modified low density lipoprotein stimulates complement C3 expression and secretion via liver X receptor and Toll-like receptor 4 activation in human macrophages. J. Biol. Chem. 287, 5954‒5968. https://doi.org/10.1074/jbc.M111.289322
Article CAS PubMed Google Scholar
Pascual G., Glass C.K. 2006. Nuclear receptors versus inflammation: Mechanisms of transrepression. Trends Endocrinol. Metab. 17, 321–327. https://doi.org/10.1016/j.tem.2006.08.005
Article CAS PubMed Google Scholar
Glass C.K., Saijo K. 2010. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376. https://doi.org/10.1038/nri2748
Article CAS PubMed Google Scholar
Collard C.D., Väkevä A., Büküsoglu C., Zünd G., Sperati C.J., Colgan S.P., Stahl G.L. 1997. Reoxygenation of hypoxic human umbilical vein endothelial cells activates the classic complement pathway. Circulation. 96, 326‒333. https://doi.org/10.1161/01.cir.96.1.326
Article CAS PubMed Google Scholar
Collard C.D., Agah A., Stahl G.L. 1998. Complement activation following reoxygenation of hypoxic human endothelial cells: Role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis. Immunopharmacology. 39, 39‒50. https://doi.org/10.1016/s0162-3109(97)00096-9
Article CAS PubMed Google Scholar
Pei Y., Zhang J., Qu J., Rao Y., Li D., Gai X., Chen Y., Liang Y., Sun Y. 2022. Complement c
Comments (0)