Regulation of Complement C3 Gene in HepG2 Human Hepatoma Cells under Oxidative Stress

Rani V., Deep G., Singh R.K., Palle K., Yadav U.C.S. 2016. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 148, 183–193. https://doi.org/10.1016/j.lfs.2016.02.002

Article  CAS  PubMed  Google Scholar 

Kyriakis J.M., Avruch J. 2012. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol. Rev. 92, 689–737. https://doi.org/10.1152/physrev.00028.2011

Article  CAS  PubMed  Google Scholar 

Schieber M., Chandel N.S. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bedard K., Krause K.-H. 2007. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 87, 245–313. https://doi.org/10.1152/physrev.00044.2005

Article  CAS  PubMed  Google Scholar 

Donath M.Y., Shoelson S.E. 2011. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107. https://doi.org/10.1038/nri2925

Article  CAS  PubMed  Google Scholar 

Walport M.J. 2001. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066. https://doi.org/10.1056/NEJM200104053441406

Article  CAS  PubMed  Google Scholar 

Sahu A., Lambris J.D. 2001. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol. Rev. 180, 35–48. https://doi.org/10.1034/j.1600-065x.2001.1800103.x

Article  CAS  PubMed  Google Scholar 

Ricklin D., Hajishengallis G., Yang K., Lambris J.D. 2010. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785‒797. https://doi.org/10.1038/ni.1923

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mogilenko D.A., Danko K., Larionova E.E., Shavva V.S., Kudriavtsev I.V., Nekrasova E.V., Burnusuz A.V., Gorbunov N.P., Trofimov A.V., Zhakhov A.V., Ivanov I.A., Orlov S.V. 2022. Differentiation of human macrophages with anaphylatoxin C3a impairs alternative M2 polarization and decreases lipopolysaccharide-induced cytokine secretion. Immunol. Cell. Biol. 100, 186‒204. https://doi.org/10.1111/imcb.12534

Article  CAS  PubMed  Google Scholar 

Barbu A., Hamad O.A., Lind L., Ekdahl K.N., Nilsson B. 2015. The role of complement factor C3 in lipid metabolism. Mol. Immunol. 67, 101–107. https://doi.org/10.1016/j.molimm.2015.02.027

Article  CAS  PubMed  Google Scholar 

Muscari A., Massarelli G., Bastagli L., Poggiopollini G., Tomassetti V., Drago G., Martignani C., Pacilli P., Boni P., Puddu P. 2000. Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men. Eur. Heart J. 21, 1081–1090. https://doi.org/10.1053/euhj.1999.2013

Article  CAS  PubMed  Google Scholar 

Hertle E., Van Greevenbroek M.M.J., Stehouwer C.D.A. 2012. Complement C3: An emerging risk factor in cardiometabolic disease. Diabetologia. 55, 881–884. https://doi.org/10.1007/s00125-012-2462-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clarke H.G., Freeman T., Pryse-Phillips W. 1971. Serum protein changes after injury. Clin. Sci. 40, 337‒344. https://doi.org/10.1042/cs0400337

Article  CAS  PubMed  Google Scholar 

Alper C.A., Johnson A.M., Birtch A.G., Moore F.D. 1969. Human C3: Evidence for the liver as the primary site of synthesis. Science. 163, 286–288. https://doi.org/10.1126/science.163.3864.286

Article  CAS  PubMed  Google Scholar 

Einstein L.P., Hansen P.J., Ballow M., Davis A.E. 3rd, Davis J.S. 4th, Alper C.A., Rosen F.S., Colten H.R. 1977. Biosynthesis of the third component of complement (C3) in vitro by monocytes from both normal and homozygous C3-deficient humans. J. Clin. Invest. 60, 963–969. https://doi.org/10.1172/JCI108876

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warren H.B., Pantazis P., Davies P.F. 1987. The third component of complement is transcribed and secreted by cultured human endothelial cells. Am. J. Pathol. 129, 9–13.

CAS  PubMed  PubMed Central  Google Scholar 

Lévi-Strauss M., Mallat M. 1987. Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. J. Immunol. 139, 2361–2366.

PubMed  Google Scholar 

Choy L.N., Rosen B.S., Spiegelman B.M. 1992. Adipsin and an endogenous pathway of complement from adipose cells. J. Biol. Chem. 267, 12736–12741. https://doi.org/10.1016/S0021-9258(18)42338-1

Article  CAS  PubMed  Google Scholar 

Volanakis J.E. 1995. Transcriptional regulation of complement genes. Annu. Rev. Immunol. 12, 277–305. https://doi.org/10.1146/annurev.iy.13.040195.001425

Article  Google Scholar 

Mogilenko D.A., Kudriavtsev I.V., Shavva V.S., Dizhe E.B., Vilenskaya G., Efremov A.M., Perevozchikov A.P., Orlov S.V. 2013. Peroxisome proliferator-activated receptor α positively regulates complement C3 expression but inhibits tumor necrosis factor α-mediated activation of C3 gene in mammalian hepatic-derived cells. J. Biol. Chem. 288, 1726–1738. https://doi.org/10.1074/jbc.M112.437525

Article  CAS  PubMed  Google Scholar 

Shavva V.S., Mogilenko D.A., Dizhe E.B., Oleinikova G.N., Perevozchikov A.P., Orlov S.V. 2013. Hepatic nuclear factor 4a positively regulates complement C3 expression and does not interfere with TNFα-mediated stimulation of C3 expression in HepG2 cells. Gene. 524, 187‒192. https://doi.org/10.1016/j.gene.2013.04.036

Article  CAS  PubMed  Google Scholar 

Shavva V.S., Bogomolova A.M., Efremov A.M., Trofimov A.N., Nikitin A.A., Babina A.V., Nekrasova E.V., Dizhe E.B., Oleinikova G.N., Missyul B.V., Orlov S.V. 2018. Insulin downregulates C3 gene expression in human HepG2 cells through activation of PPARγ. Eur. J. Cell. Biol. 97, 204‒215. https://doi.org/10.1016/j.ejcb.2018.03.001

Article  CAS  PubMed  Google Scholar 

Mogilenko D.A., Kudriavtsev I.V., Trulioff A.S., Shavva V.S., Dizhe E.B., Missyul B.V., Zhakhov A.V., Ischenko A.M., Perevozchikov A.P., Orlov S.V. 2012. Modified low density lipoprotein stimulates complement C3 expression and secretion via liver X receptor and Toll-like receptor 4 activation in human macrophages. J. Biol. Chem. 287, 5954‒5968. https://doi.org/10.1074/jbc.M111.289322

Article  CAS  PubMed  Google Scholar 

Pascual G., Glass C.K. 2006. Nuclear receptors versus inflammation: Mechanisms of transrepression. Trends Endocrinol. Metab. 17, 321–327. https://doi.org/10.1016/j.tem.2006.08.005

Article  CAS  PubMed  Google Scholar 

Glass C.K., Saijo K. 2010. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376. https://doi.org/10.1038/nri2748

Article  CAS  PubMed  Google Scholar 

Collard C.D., Väkevä A., Büküsoglu C., Zünd G., Sperati C.J., Colgan S.P., Stahl G.L. 1997. Reoxygenation of hypoxic human umbilical vein endothelial cells activates the classic complement pathway. Circulation. 96, 326‒333. https://doi.org/10.1161/01.cir.96.1.326

Article  CAS  PubMed  Google Scholar 

Collard C.D., Agah A., Stahl G.L. 1998. Complement activation following reoxygenation of hypoxic human endothelial cells: Role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis. Immunopharmacology. 39, 39‒50. https://doi.org/10.1016/s0162-3109(97)00096-9

Article  CAS  PubMed  Google Scholar 

Pei Y., Zhang J., Qu J., Rao Y., Li D., Gai X., Chen Y., Liang Y., Sun Y. 2022. Complement c

Comments (0)

No login
gif