Stepwise Administration of Bone-Targeted Lipid Nanoparticles Encapsulating Valproic Acid and TUDCA Facilitates Direct Reprogramming for Osteoporosis Treatment

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

CAS  PubMed  Google Scholar 

Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell. 2014;156:663–77.

CAS  PubMed  Google Scholar 

Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol. 2021;22:410–24.

PubMed  PubMed Central  Google Scholar 

Yin X, Zhou C, Li J, Liu R, Shi B, Yuan Q, et al. Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res. 2019;7:28.

PubMed  PubMed Central  Google Scholar 

Akkawi I, Zmerly H. Osteoporosis: current concepts. Joints. 2018;6:122–7.

PubMed  PubMed Central  Google Scholar 

Chang Y, Cho B, Kim S, Kim J. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med. 2019;51:1–8.

PubMed  Google Scholar 

Fallah A, Beke A, Oborn C, Soltys CL, Kannu P. Direct reprogramming of fibroblasts to osteoblasts: techniques and methodologies. Stem Cells Transl Med. 2024;13:362–70.

CAS  PubMed  Google Scholar 

Yamamoto K, Kishida T, Sato Y, Nishioka K, Ejima A, Fujiwara H, et al. Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci U S A. 2015;112:6152–7.

CAS  PubMed  PubMed Central  Google Scholar 

Mizoshiri N, Kishida T, Yamamoto K, Shirai T, Terauchi R, Tsuchida S, et al. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts. Biochem Biophys Res Commun. 2015;467:1110–6.

CAS  PubMed  Google Scholar 

Li Y, Wang Y, Yu J, Ma Z, Bai Q, Wu X, et al. Direct conversion of human fibroblasts into osteoblasts and osteocytes with small molecules and a single factor, Runx2. bioRxiv 2017:127480.

Yamamoto K, Kishida T, Nakai K, Sato Y, Kotani SI, Nishizawa Y, et al. Direct phenotypic conversion of human fibroblasts into functional osteoblasts triggered by a blockade of the transforming growth factor-beta signal. Sci Rep. 2018;8:8463.

PubMed  PubMed Central  Google Scholar 

Cha H, Lee J, Park HH, Park JH. Direct conversion of human fibroblasts into osteoblasts triggered by histone deacetylase inhibitor valproic acid. Appl Sci. 2020;10:7372.

CAS  Google Scholar 

Liu X, Sun H, Qi J, Wang L, He S, Liu J, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT–MET mechanism for optimal reprogramming. Nat Cell Biol. 2013;15:829–38.

CAS  PubMed  Google Scholar 

Prakash N, Cha Y, Koh WG, Park H, Bello AB, Lee SH. Derivation of mesenchymal stem cells through sequential presentation of growth factors via gelatin microparticles in pluripotent stem cell spheroids. Biomater Res. 2025;29:0184.

PubMed  PubMed Central  Google Scholar 

Bello AB, Canlas KKV, Kim D, Park H, Lee SH. Stepwise dual-release microparticles of BMP-4 and SCF in induced pluripotent stem cell spheroids enhance differentiation into hematopoietic stem cells. J Control Release. 2024;371:386–405.

CAS  PubMed  Google Scholar 

Kim HJ, Park JS, Yi SW, Oh HJ, Kim JH, Park KH. Sequential transfection of RUNX2/SP7 and ATF4 coated onto dexamethasone-loaded nanospheres enhances osteogenesis. Sci Rep. 2018;8:1447.

PubMed  PubMed Central  Google Scholar 

Xie X, Fu Y, Liu J. Chemical reprogramming and transdifferentiation. Curr Opin Genet Dev. 2017;46:104–13.

CAS  PubMed  Google Scholar 

Qin H, Diaz A, Blouin L, Lebbink Robert J, Patena W, Tanbun P, et al. systematic identification of barriers to human iPSC generation. Cell. 2014;158:449–61.

CAS  PubMed  PubMed Central  Google Scholar 

Anokye-Danso F, Snitow M, Morrisey EE. How microRNAs facilitate reprogramming to pluripotency. J Cell Sci. 2012;125:4179–87.

CAS  PubMed  PubMed Central  Google Scholar 

Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341:651–4.

CAS  PubMed  Google Scholar 

Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 2014;24:665–79.

CAS  PubMed  PubMed Central  Google Scholar 

Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W, et al. Direct Conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell. 2015;17:204–12.

CAS  PubMed  Google Scholar 

Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther. 2022;7:374.

CAS  PubMed  PubMed Central  Google Scholar 

Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734–41.

CAS  PubMed  Google Scholar 

Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008;26:795–7.

CAS  PubMed  PubMed Central  Google Scholar 

Baker M. Small molecules boost reprogramming rates. Nature Rep Stem Cells. 2008. https://doi.org/10.1038/stemcells.2008.99

Cha BH, Kim JS, Chan Ahn J, Kim HC, Kim BS, Han DK, et al. The role of tauroursodeoxycholic acid on adipogenesis of human adipose-derived stem cells by modulation of ER stress. Biomaterials. 2014;35:2851–8.

CAS  PubMed  Google Scholar 

Cha BH, Jung MJ, Moon BK, Kim JS, Ma Y, Arai Y, et al. Administration of tauroursodeoxycholic acid enhances osteogenic differentiation of bone marrow-derived mesenchymal stem cells and bone regeneration. Bone. 2016;83:73–81.

CAS  PubMed  Google Scholar 

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discovery. 2021;20:101–24.

CAS  PubMed  Google Scholar 

Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta. 1977;470:185–201.

CAS  PubMed  Google Scholar 

Lee S, Kim B, Lee M-J, Kim D, Park S, Kim J, et al. Curcumin-PLGA NPs coated with targeting biomimetic personalized stem cell membranes for osteoarthritis therapy. J Control Release. 2025;381:113625.

CAS  PubMed  Google Scholar 

Young RN, Grynpas MD. Targeting therapeutics to bone by conjugation with bisphosphonates. Curr Opin Pharmacol. 2018;40:87–94.

CAS  PubMed  Google Scholar 

Fu C, Jin X, Ji K, Lan K, Mao X, Huang Z, et al. Macrophage-targeted Mms6 mRNA-lipid nanoparticles promote locomotor functional recovery after traumatic spinal cord injury in mice. Sci Adv. 2025;11:eads2295.

CAS  PubMed  PubMed Central  Google Scholar 

Smith T, Affram K, Nottingham EL, Han B, Amissah F, Krishnan S, et al. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci Rep. 2020;10:16989.

CAS  PubMed  PubMed Central  Google Scholar 

Truong B, Allegri G, Liu XB, Burke KE, Zhu X, Cederbaum SD, et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc Natl Acad Sci. 2019;116:21150–9.

CAS  PubMed  PubMed Central  Google Scholar 

Qiu M, Tang Y, Chen J, Muriph R, Ye Z, Huang C, et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci U S A. 2022;119:e2116271119.

CAS  PubMed  PubMed Central  Google Scholar 

Iwasaki Y, Fukaura S, Mabuchi S, Okuno Y, Yokota A, Neo M. Suppression of bone resorption in ovariectomized mice using estrogen-immobilized polyphosphodiesters. Materialia. 2024;36: 102166.

CAS  Google Scholar 

Kang HK, Park CY, Jung SY, Jo SB, Min BM. A Vitronectin-derived peptide restores ovariectomy-induced bone loss by dual regulation of bone remodeling. Tissue Eng Regen Med. 2022;19:1359–76.

CAS  PubMed 

Comments (0)

No login
gif