SIRT4 Regulated by a Mechanosensor, PIEZO1 Shows a Protective Function to Suppress Ox-LDL Uptake in Endothelial Cells

Chaffey N, Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. MBoC. 4th ed. Oxford: Oxford University Press; 2003.

Google Scholar 

Lee H-W, Shin JH, Simons M. Flow goes forward and cells step backward: endothelial migration. Exp Mol Med. 2022;54:711–9.

CAS  PubMed  PubMed Central  Google Scholar 

Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7:803–15.

CAS  PubMed  Google Scholar 

Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17: 69. BioMed Central Ltd.

Li Y-SJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–71.

PubMed  Google Scholar 

Humphrey JD, Schwartz MA. Vascular mechanobiology: homeostasis, adaptation, and disease. Annu Rev Biomed Eng. 2021;23:1–27.

CAS  PubMed  PubMed Central  Google Scholar 

Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R, et al. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis. 2011;214:249–56.

CAS  PubMed  Google Scholar 

Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, et al. Pathophysiology of atherosclerosis. Int J Mol Sci. 2022;23:3346.

CAS  PubMed  PubMed Central  Google Scholar 

Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Laboratory Invest. 2005;85:9–23.

CAS  Google Scholar 

Li D, Mehta JL. Oxidized LDL, a critical factor in atherogenesis. New York: Elsevier Science; 2005. p. 353–4.

Google Scholar 

Zheng Z, Zeng Y, Zhu X, Tan Y, Li Y, Li Q, et al. ApoM-S1P modulates Ox-LDL-induced inflammation through the PI3K/Akt signaling pathway in HUVECs. Inflammation. 2019;42:606–17.

CAS  PubMed  Google Scholar 

Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL. Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal. 2011;15:2301–33.

CAS  PubMed  Google Scholar 

Qin L, He T, Chen S, Yang D, Yi W, Cao H, et al. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res. 2021;9:44.

CAS  PubMed  PubMed Central  Google Scholar 

Jiang F, Wu K, Yin K, Zhang M, Wang S-Q, Cheng H, et al. The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. Biophys J. 2021;120:102a–3a.

Google Scholar 

Ridone P, Vassalli M, Martinac B. Piezo1 mechanosensitive channels: what are they and why are they important. Biophys Rev. 2019;11:795–805.

PubMed  PubMed Central  Google Scholar 

Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, et al. Structure and mechanogating mechanism of the Piezo1 channel. Nat. 2018;554:487–92.

CAS  Google Scholar 

Harraz OF, Jensen LJ. Aging, calcium channel signaling and vascular tone. Mech Ageing Dev. 2020;191: 111336.

CAS  PubMed  PubMed Central  Google Scholar 

Lin BH, Tsai MH, Lii CK, Wang TS. IP3 and calcium signaling involved in the reorganization of the actin cytoskeleton and cell rounding induced by cigarette smoke extract in human endothelial cells. Environ Toxicol. 2016;31:1293–306.

CAS  PubMed  Google Scholar 

Wang C, Liu Y, Zhu Y, Kong C. Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Oncol Lett. 2020;20:1.

Google Scholar 

Wood JG, Schwer B, Wickremesinghe PC, Hartnett DA, Burhenn L, Garcia M, et al. Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster. PNAS. 2018;115:1564–9.

CAS  PubMed  PubMed Central  Google Scholar 

Tao Y, Huang C, Huang Y, Hong L, Wang H, Zhou Z, et al. SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells. Cardiovasc Toxicol. 2015;15:217–23.

CAS  PubMed  Google Scholar 

Han Y, Zhou S, Coetzee S, Chen A. SIRT4 and its roles in energy and redox metabolism in health, disease and during exercise. Front Physiol. 2019;10:1006.

PubMed  PubMed Central  Google Scholar 

Chang S, Zhang G, Li L, Li H, Jin X, Wang Y, et al. Sirt4 deficiency promotes the development of atherosclerosis by activating the NF-κB/IκB/CXCL2/3 pathway. Atherosclerosis. 2023;373:29–37.

CAS  PubMed  Google Scholar 

Winnik S, Auwerx J, Sinclair DA, Matter CM. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J. 2015;36:3404–12.

CAS  PubMed  PubMed Central  Google Scholar 

Moo-Young M. Comprehensive biotechnology. New York: Elsevier; 2019.

Google Scholar 

Zhao S, Suciu A, Ziegler T, Moore JE Jr, Bürki E, Meister J-J, et al. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler Thromb Vasc Biol. 1995;15:1781–6.

CAS  PubMed  Google Scholar 

Green JP, Souilhol C, Xanthis I, Martinez-Campesino L, Bowden NP, Evans PC, et al. Atheroprone flow activates inflammation via endothelial ATP-dependent P2X7-p38 signalling. Cardiovasc Res. 2018;114:324–35.

CAS  PubMed  Google Scholar 

Jiang P, Chen Z, Hippe DS, Watase H, Sun B, Lin R, et al. Association between carotid bifurcation geometry and atherosclerotic plaque vulnerability: a Chinese atherosclerosis risk evaluation study. Arterioscler Thromb Vasc Biol. 2020;40:1383–91.

CAS  PubMed  Google Scholar 

Bi P, Kuang S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab. 2015;26:248–55.

CAS  PubMed  PubMed Central  Google Scholar 

Xu J, Chi F, Guo T, Punj V, Lee WP, French SW, et al. NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J Clin Invest. 2015;125:1579–90.

PubMed  PubMed Central  Google Scholar 

Martino E, D’Onofrio N, Balestrieri A, Mele L, Sardu C, Marfella R, et al. MiR-15b-5p and PCSK9 inhibition reduces lipopolysaccharide-induced endothelial dysfunction by targeting SIRT4. Cell Mol Biol Lett. 2023;28:66.

CAS  PubMed  PubMed Central  Google Scholar 

Min Z, Gao J, Yu Y. The roles of mitochondrial SIRT4 in cellular metabolism. Front Endocrinol. 2019;9:783.

Google Scholar 

Mack JJ, Mosqueiro TS, Archer BJ, Jones WM, Sunshine H, Faas GC, et al. NOTCH1 is a mechanosensor in adult arteries. Nat Commun. 2017;8:1620.

PubMed  PubMed Central  Google Scholar 

Vieceli Dalla Sega F, Fortini F, Aquila G, Campo G, Vaccarezza M, Rizzo P. Notch signaling regulates immune responses in atherosclerosis. Front Immunol. 2019;10:1130.

PubMed  PubMed Central  Google Scholar 

Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther. 2002;95:89–100.

CAS  PubMed  Google Scholar 

Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–87.

PubMed  Google Scholar 

Maurya MR, Gupta S, Li JY-S, Ajami NE, Chen ZB, Shyy JY-J, et al. Longitudinal shear stress response in human endothelial cells to atheroprone and atheroprotective conditions. PNAS. 2021;118:e2023236118.

CAS  PubMed  PubMed Central  Google Scholar 

Bélanger MC, Marois Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J Biomed Mater Res B Appl Biomater. 2001;58:467–77.

Google Scholar 

Comments (0)

No login
gif