circRNA_Atp8a1 Promotes Glycolytic Reprogramming in Damage of Intestinal Mucosal Barrier by Upregulating IGF2 through miR-200b-3p

Ramos GP, Papadakis KA. Mechanisms of disease: inflammatory bowel diseases. Mayo Clin Proc. 2019;94:155–65.

CAS  PubMed  Google Scholar 

Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–78.

CAS  PubMed  PubMed Central  Google Scholar 

Ma Y, Wang Q, Yu K, Fan X, Xiao W, Cai Y, et al. 6-Formylindolo(3,2-b)carbazole induced aryl hydrocarbon receptor activation prevents intestinal barrier dysfunction through regulation of claudin-2 expression. Chem Biol Interact. 2018;288:83–90.

CAS  PubMed  Google Scholar 

Schoultz I, Keita ÅV. Cellular and molecular therapeutic targets in inflammatory bowel disease-focusing on intestinal barrier function. Cells. 2019;8:56.

Google Scholar 

Ouwehand A, Isolauri E, Salminen S. The role of the intestinal microflora for the development of the immune system in early childhood. Eur J Nutr. 2002;41:I32–7.

PubMed  Google Scholar 

Jiang S, Miao Z. High-fat diet induces intestinal mucosal barrier dysfunction in ulcerative colitis: emerging mechanisms and dietary intervention perspective. Am J Transl Res. 2023;15:653–77.

CAS  PubMed  PubMed Central  Google Scholar 

Yan B, Mao X, Hu S, Wang S, Liu X, Sun J. Spermidine protects intestinal mucosal barrier function in mice colitis via the AhR/Nrf2 and AhR/STAT3 signaling pathways. Int Immunopharmacol. 2023;119:110166.

CAS  PubMed  Google Scholar 

Seok SH, Ma ZX, Feltenberger JB, Chen H, Chen H, Scarlett C, et al. Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR). J Biol Chem. 2018;293:1994–2005.

CAS  PubMed  Google Scholar 

Moinard C, Cynober L, de Bandt JP. Polyamines: metabolism and implications in human diseases. Clin Nutr. 2005;24:184–97.

CAS  PubMed  Google Scholar 

Luissint AC, Parkos CA, Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology. 2016;151:616–32.

CAS  PubMed  Google Scholar 

Yuan Q, Sun Y, Yang F, Yan D, Shen M, Jin Z, et al. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Signal Transduct Target Ther. 2023;8:99.

CAS  PubMed  PubMed Central  Google Scholar 

Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH. CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol. 2019;58:90–9.

CAS  PubMed  Google Scholar 

Li P, Chen S, Chen H, Mo X, Li T, Shao Y, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–6.

CAS  PubMed  Google Scholar 

Alkhathami AG, Sahib AS, Al Fayi MS, Fadhil AA, Jawad MA, Shafik SA, et al. Glycolysis in human cancers: Emphasis circRNA/glycolysis axis and nanoparticles in glycolysis regulation in cancer therapy. Environ Res. 2023;234:116007.

CAS  PubMed  Google Scholar 

Li P, Mi Q, Yan S, Xie Y, Cui Z, Zhang S, et al. Characterization of circSCL38A1 as a novel oncogene in bladder cancer via targeting ILF3/TGF-β2 signaling axis. Cell Death Dis. 2023;14:59.

PubMed  PubMed Central  Google Scholar 

Vromman M, Vandesompele J, Volders PJ. Closing the circle: current state and perspectives of circular RNA databases. Brief Bioinform. 2021;22:288–97.

CAS  PubMed  Google Scholar 

Li J, Wang X. Functional roles of conserved lncRNAs and circRNAs in eukaryotes. Noncoding RNA Res. 2024;9:1271–9.

CAS  PubMed  PubMed Central  Google Scholar 

Mei X, Chen SY. Circular RNAs in cardiovascular diseases. Pharmacol Ther. 2022;232:107991.

CAS  PubMed  Google Scholar 

Zhao RJ, Zhang WY, Fan XX. Circular RNAs: potential biomarkers and therapeutic targets for autoimmune diseases. Heliyon. 2024;10:e23694.

CAS  PubMed  Google Scholar 

Xiao F, He Z, Wang S, Li J, Fan X, Yan T, et al. Regulatory mechanism of circular RNAs in neurodegenerative diseases. CNS Neurosci Ther. 2024;30:e14499.

CAS  PubMed  Google Scholar 

Kim E, Kim YK, Lee SV. Emerging functions of circular RNA in aging. Trends Genet. 2021;37:819–29.

CAS  PubMed  Google Scholar 

Jagtap U, Anderson ES, Slack FJ. The emerging value of circular noncoding RNA research in cancer diagnosis and treatment. Cancer Res. 2023;83:809–13.

CAS  PubMed  PubMed Central  Google Scholar 

Liu Q, Li S. Exosomal circRNAs: novel biomarkers and therapeutic targets for urinary tumors. Cancer lett. 2024;588:216759.

CAS  PubMed  Google Scholar 

Lin Z, Ji Y, Zhou J, Li G, Wu Y, Liu W, et al. Exosomal circRNAs in cancer: implications for therapy resistance and biomarkers. Cancer lett. 2023;566:216245.

CAS  PubMed  Google Scholar 

Zhang W, Yan H, Deng Y, Lou J, Zhang P, Cui Q, et al. Expression profile and bioinformatics analysis of circular RNA in intestinal mucosal injury and repair after severe burns. Cell Biol Int. 2020;44:2570–87.

CAS  PubMed  Google Scholar 

Kostiniuk D, Marttila S, Raitoharju E. Circulatory miRNAs in essential hypertension. Atherosclerosis. 2025;401:119069.

CAS  PubMed  Google Scholar 

Sarropoulou E, Katharios P, Kaitetzidou E, Scapigliati G, Miccoli A. Circulating miRNAs involved in the immune response of the European seabass (Dicentrarchus labrax). Fish Shellfish Immunol. 2025;160:110232.

CAS  PubMed  Google Scholar 

Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141:1202–7.

CAS  PubMed  Google Scholar 

Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature. 2009;457:405–12.

CAS  PubMed  Google Scholar 

Guo H, Gao J, Qian Y, Wang H, Liu J, Peng Q, et al. miR-125b-5p inhibits cell proliferation by targeting ASCT2 and regulating the PI3K/AKT/mTOR pathway in an LPS-induced intestinal mucosa cell injury model. Exp Ther Med. 2021;22:838.

CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Ma Y, Shi C, Chen H, Zhang H, Chen N, et al. Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochem Biophys Res Commun. 2013;434:746–52.

CAS  PubMed  Google Scholar 

Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

CAS  PubMed  Google Scholar 

Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.

CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature. 2008;456:921–6.

CAS  PubMed  PubMed Central  Google Scholar 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

CAS  PubMed  Google Scholar 

Zhang W, Liao Y, Lou J, Zhuang M, Yan H, Li Q, et al. CircRNA_Maml2 promotes the proliferation and migration of intestinal epithelial cells after severe burns by regulating the miR-93–3p/FZD7/Wnt/β-catenin pathway. Burns Trauma. 2022; 10:tkac009.

Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124:3–22.

CAS  PubMed  PubMed Central  Google Scholar 

Sánchez de Medina F, Romero-Calvo I, Mascaraque C, Martínez-Augustin O. Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis. 2014; 20:2394–2404.

Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol. 2021;11:1463–82.

CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif