Item does not exist

Effect of Solute Molecular Weights on Mass Transfer within the Rat Lacunar-Canalicular System under Gravity

Grimm D, Grosse J, Wehland M, Mann V, Reseland JE, Sundaresan A, et al. The impact of microgravity on bone in humans. Bone. 2016;87:44–56.

PubMed  Google Scholar 

Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–90.

CAS  PubMed  Google Scholar 

Wei F, Flowerdew K, Kinzel M, Perotti LE, Asiatico J, Omer M, et al. Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res. 2022;10:65.

Robinson JA, Thumm TL, Thomas DA. NASA utilization of the international space station and the vision for space exploration. Acta Astronaut. 2007;61:176–84.

Google Scholar 

You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, et al. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone. 2008;42:172–9.

CAS  PubMed  Google Scholar 

Stavnichuk M, Mikolajewicz N, Corlett T, Morris M, Komarova SV. A systematic review and meta-analysis of bone loss in space travelers. NPJ Microgravity. 2020;6:13.

CAS  PubMed  PubMed Central  Google Scholar 

Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.

PubMed  Google Scholar 

Miao ZP, Chou WX, Ma XL, Qian AR. Advances in research on effects of space microgravity on bone metabolism. J Astronaut. 2017;38:219–29.

Google Scholar 

Carmeliet G, Bouillon R. The effect of microgravity on morphology and gene expression of osteoblasts in vitro. Faseb J. 1999;13:S129–34.

CAS  PubMed  Google Scholar 

Cowin SC, Cardoso L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech. 2015;48:842–54.

PubMed  Google Scholar 

Cowin SC. Mechanosensation and fluid transport in living bone. J Musculoskelet Neuronal Interact. 2002;2:256–60.

CAS  PubMed  Google Scholar 

Wang L. Solute transport in the bone lacunar-canalicular system (LCS). Curr Osteoporos Rep. 2018;16:32–41.

PubMed  PubMed Central  Google Scholar 

Wang L, You X, Zhang L, Zhang C, Zou W. Mechanical regulation of bone remodeling. Bone Res. 2022;10:16.

CAS  PubMed  PubMed Central  Google Scholar 

Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50.

CAS  PubMed  Google Scholar 

Zhao S, Kato Y, Zhang Y, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17:2068–79.

CAS  PubMed  Google Scholar 

Alfieri R, Vassalli M, Viti F. Flow-induced mechanotransduction in skeletal cells. Biophys Rev. 2019;11:729–43.

PubMed  PubMed Central  Google Scholar 

van Tol AF, Roschger A, Repp F, Chen J, Roschger P, Berzlanovich A, et al. Network architecture strongly influences the fluid flow pattern through the lacunocanalicular network in human osteons. Biomech Model Mechanobiol. 2020;19:823–40.

PubMed  Google Scholar 

Kufahl RH, Saha S. A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue. J Biomech. 1990;23:171–80.

CAS  PubMed  Google Scholar 

Wang L, Ciani C, Doty SB, Fritton SP. Delineating bone’s interstitial fluid pathway in vivo. Bone. 2004;34:499–509.

PubMed  PubMed Central  Google Scholar 

Kumar R, Tiwari AK, Tripathi D, Sharma NN. Signalling molecule transport analysis in lacunar-canalicular system. Biomech Model Mechanobiol. 2020;19:1879–96.

PubMed  Google Scholar 

Montgomery RJ, Sutker BD, Bronk JT, Smith SR, Kelly PJ. Interstitial fluid flow in cortical bone. Microvasc Res. 1988;35:295–307.

CAS  PubMed  Google Scholar 

Zhou X, Novotny JE, Wang L. Anatomic variations of the lacunar-canalicular system influence solute transport in bone. Bone. 2009;45:704–10.

CAS  PubMed  PubMed Central  Google Scholar 

Wu V, van Oers R, Schulten E, Helder MN, Bacabac RG, Klein-Nulend J. Osteocyte morphology and orientation in relation to strain in the jaw bone. Int J Oral Sci. 2018;10:2.

PubMed  PubMed Central  Google Scholar 

Huo B. Bone cell mechanics. Beijing: Science Press; 2016.

Google Scholar 

Wang H, Liu H, Wang X, Zhang C. The lack of mass transfer in bone lacunar-canalicular system may be the decisive factor of osteoporosis under microgravity. Life Sci Space Res (Amst). 2021;31:80–4.

PubMed  Google Scholar 

Zhang C, Xiong B, Gao L, Lv L, Zhang X. Progress in the effect of mass transfer in the lacunar-canalicular system on aging osteoporosis. Acta Mech Solida Sin. 2024. https://doi.org/10.1007/s10338-024-00544-x.

Article  Google Scholar 

Wang H, Gao L, Chen X, Zhang C. Study on mass transfer in the bone lacunar-canalicular system under different gravity fields. J Bone Miner Metab. 2022;40:940–50.

PubMed  Google Scholar 

Wang H, Wang J, Li K, Gao L, Wang A, Wei S, et al. The effect of different gravity fields on mass transfer in the rat bone lacunar-canalicular system. Med Novel Technol Devices. 2023;17:100208.

Google Scholar 

Wang H, Wang J, Lyu L, Wei S, Zhang C. Numerical simulation on mass transfer in the bone lacunar-canalicular system under different gravity fields. Comput Method Biomec. 2023;27:478–88.

Google Scholar 

Fedchuk MV, Rusanov VB, Koloteva MI, Tersintseva AI, Salnikov AV, Luchitskaya ES, et al. Potential of interval training protocol on a short-arm human centrifuge for orthostatic intolerance prevention after space flight conditions. Microgravity Sci Tec. 2025;37:15.

Google Scholar 

Hillier ML, Bell LS. Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci. 2007;52:249–63.

PubMed  Google Scholar 

Aboulkhair AG, AboZeid AA, Beherei HH, Kamar SS. Regenerative effect of microcarrier form of acellular dermal matrix versus bone matrix bio-scaffolds loaded with adipose stem cells on rat bone defect. Ann Anat. 2024;252:152203.

PubMed  Google Scholar 

Ma Y, Yuan Y, Xie L, Li Y, Wang Y, Shi ZZ. Effects of simulated weightlessness and mechanical loading on bone interstitial fluid flow in rats. Space Med Med Eng. 2003;16:257–9.

Google Scholar 

Han B, Gou Y, Wei S, Li H, Zhang X. Differential MiRNA/mRNA expression profiling and functional network analysis for MC3T3-E1 cells with microgravity stimulation based on RNA-seq. J Med Biomech. 2020;35:35–42.

Google Scholar 

Han B. The study of the effect of and mechanism of simulated microgravity environment on MC3T3-E1 osteoblasts. Academy of Military Sciences; 2019

Li J, Sun ML, Song GM, Zhang CQ, Li RX, Zhang XZ, et al. The mechanical and biological responses of MC3T3-E1 cells under hypergravity. J Med Biomech. 2017;38:219–29.

CAS  Google Scholar 

Yu W, Ou R, Hou Q, Li C, Yang X, Ma Y, et al. Multiscale interstitial fluid computation modeling of cortical bone to characterize the hydromechanical stimulation of lacunar-canalicular network. Bone. 2025;193:16.

Google Scholar 

van Tol AF, Schemenz V, Wagermaier W, Roschger A, Razi H, Vitienes I, et al. The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture. Proc Natl Acad Sci U S A. 2020;117:32251–9.

PubMed  PubMed Central  Google Scholar 

Hart DA. Regulation of bone by mechanical loading, sex hormones, and nerves: integration of such regulatory complexity and implications for bone loss during space flight and post-menopausal osteoporosis. Biomolecules. 2023;13:1136.

CAS  PubMed  PubMed Central  Google Scholar 

Liu H, Zhao S, Zhang H, Huang S, Peng W, Zhang C, et al. Research on solute transport behaviors in the lacunar-canalicular system using numerical simulation in microgravity. Comput Biol Med. 2020;119:10.

Google Scholar 

Gupta A, Saha S, Das A, Chowdhury AR. Evaluating the influence on osteocyte mechanobiology within the lacunar-canalicular system for varying lacunar equancy and perilacunar elasticity: a multiscale fluid-structure interaction analysis. J Mech Behav Biomed. 2024;160:15.

Google Scholar 

Bonanni R, Cariati I, Marini M, Tarantino U, Tancredi V. Microgravity and musculoskeletal health: What strategies should be used for a great challenge? Life. 2023;13:1423.

PubMed  PubMed Central  Google Scholar 

Miao LW, Liu TZ, Sun YH, Cai N, Xuan YY, Wei Z, et al. Simulated microgravity©\induced oxidative stress and loss of osteogenic potential of osteoblasts can be prevented by protection of primary cilia. J Cell Physiol. 2023;238:2692–709.

CAS  PubMed  Google Scholar 

Comments (0)

No login
gif