Grimm D, Grosse J, Wehland M, Mann V, Reseland JE, Sundaresan A, et al. The impact of microgravity on bone in humans. Bone. 2016;87:44–56.
Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–90.
Wei F, Flowerdew K, Kinzel M, Perotti LE, Asiatico J, Omer M, et al. Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res. 2022;10:65.
Robinson JA, Thumm TL, Thomas DA. NASA utilization of the international space station and the vision for space exploration. Acta Astronaut. 2007;61:176–84.
You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, et al. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone. 2008;42:172–9.
Stavnichuk M, Mikolajewicz N, Corlett T, Morris M, Komarova SV. A systematic review and meta-analysis of bone loss in space travelers. NPJ Microgravity. 2020;6:13.
CAS PubMed PubMed Central Google Scholar
Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.
Miao ZP, Chou WX, Ma XL, Qian AR. Advances in research on effects of space microgravity on bone metabolism. J Astronaut. 2017;38:219–29.
Carmeliet G, Bouillon R. The effect of microgravity on morphology and gene expression of osteoblasts in vitro. Faseb J. 1999;13:S129–34.
Cowin SC, Cardoso L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech. 2015;48:842–54.
Cowin SC. Mechanosensation and fluid transport in living bone. J Musculoskelet Neuronal Interact. 2002;2:256–60.
Wang L. Solute transport in the bone lacunar-canalicular system (LCS). Curr Osteoporos Rep. 2018;16:32–41.
PubMed PubMed Central Google Scholar
Wang L, You X, Zhang L, Zhang C, Zou W. Mechanical regulation of bone remodeling. Bone Res. 2022;10:16.
CAS PubMed PubMed Central Google Scholar
Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50.
Zhao S, Kato Y, Zhang Y, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17:2068–79.
Alfieri R, Vassalli M, Viti F. Flow-induced mechanotransduction in skeletal cells. Biophys Rev. 2019;11:729–43.
PubMed PubMed Central Google Scholar
van Tol AF, Roschger A, Repp F, Chen J, Roschger P, Berzlanovich A, et al. Network architecture strongly influences the fluid flow pattern through the lacunocanalicular network in human osteons. Biomech Model Mechanobiol. 2020;19:823–40.
Kufahl RH, Saha S. A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue. J Biomech. 1990;23:171–80.
Wang L, Ciani C, Doty SB, Fritton SP. Delineating bone’s interstitial fluid pathway in vivo. Bone. 2004;34:499–509.
PubMed PubMed Central Google Scholar
Kumar R, Tiwari AK, Tripathi D, Sharma NN. Signalling molecule transport analysis in lacunar-canalicular system. Biomech Model Mechanobiol. 2020;19:1879–96.
Montgomery RJ, Sutker BD, Bronk JT, Smith SR, Kelly PJ. Interstitial fluid flow in cortical bone. Microvasc Res. 1988;35:295–307.
Zhou X, Novotny JE, Wang L. Anatomic variations of the lacunar-canalicular system influence solute transport in bone. Bone. 2009;45:704–10.
CAS PubMed PubMed Central Google Scholar
Wu V, van Oers R, Schulten E, Helder MN, Bacabac RG, Klein-Nulend J. Osteocyte morphology and orientation in relation to strain in the jaw bone. Int J Oral Sci. 2018;10:2.
PubMed PubMed Central Google Scholar
Huo B. Bone cell mechanics. Beijing: Science Press; 2016.
Wang H, Liu H, Wang X, Zhang C. The lack of mass transfer in bone lacunar-canalicular system may be the decisive factor of osteoporosis under microgravity. Life Sci Space Res (Amst). 2021;31:80–4.
Zhang C, Xiong B, Gao L, Lv L, Zhang X. Progress in the effect of mass transfer in the lacunar-canalicular system on aging osteoporosis. Acta Mech Solida Sin. 2024. https://doi.org/10.1007/s10338-024-00544-x.
Wang H, Gao L, Chen X, Zhang C. Study on mass transfer in the bone lacunar-canalicular system under different gravity fields. J Bone Miner Metab. 2022;40:940–50.
Wang H, Wang J, Li K, Gao L, Wang A, Wei S, et al. The effect of different gravity fields on mass transfer in the rat bone lacunar-canalicular system. Med Novel Technol Devices. 2023;17:100208.
Wang H, Wang J, Lyu L, Wei S, Zhang C. Numerical simulation on mass transfer in the bone lacunar-canalicular system under different gravity fields. Comput Method Biomec. 2023;27:478–88.
Fedchuk MV, Rusanov VB, Koloteva MI, Tersintseva AI, Salnikov AV, Luchitskaya ES, et al. Potential of interval training protocol on a short-arm human centrifuge for orthostatic intolerance prevention after space flight conditions. Microgravity Sci Tec. 2025;37:15.
Hillier ML, Bell LS. Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci. 2007;52:249–63.
Aboulkhair AG, AboZeid AA, Beherei HH, Kamar SS. Regenerative effect of microcarrier form of acellular dermal matrix versus bone matrix bio-scaffolds loaded with adipose stem cells on rat bone defect. Ann Anat. 2024;252:152203.
Ma Y, Yuan Y, Xie L, Li Y, Wang Y, Shi ZZ. Effects of simulated weightlessness and mechanical loading on bone interstitial fluid flow in rats. Space Med Med Eng. 2003;16:257–9.
Han B, Gou Y, Wei S, Li H, Zhang X. Differential MiRNA/mRNA expression profiling and functional network analysis for MC3T3-E1 cells with microgravity stimulation based on RNA-seq. J Med Biomech. 2020;35:35–42.
Han B. The study of the effect of and mechanism of simulated microgravity environment on MC3T3-E1 osteoblasts. Academy of Military Sciences; 2019
Li J, Sun ML, Song GM, Zhang CQ, Li RX, Zhang XZ, et al. The mechanical and biological responses of MC3T3-E1 cells under hypergravity. J Med Biomech. 2017;38:219–29.
Yu W, Ou R, Hou Q, Li C, Yang X, Ma Y, et al. Multiscale interstitial fluid computation modeling of cortical bone to characterize the hydromechanical stimulation of lacunar-canalicular network. Bone. 2025;193:16.
van Tol AF, Schemenz V, Wagermaier W, Roschger A, Razi H, Vitienes I, et al. The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture. Proc Natl Acad Sci U S A. 2020;117:32251–9.
PubMed PubMed Central Google Scholar
Hart DA. Regulation of bone by mechanical loading, sex hormones, and nerves: integration of such regulatory complexity and implications for bone loss during space flight and post-menopausal osteoporosis. Biomolecules. 2023;13:1136.
CAS PubMed PubMed Central Google Scholar
Liu H, Zhao S, Zhang H, Huang S, Peng W, Zhang C, et al. Research on solute transport behaviors in the lacunar-canalicular system using numerical simulation in microgravity. Comput Biol Med. 2020;119:10.
Gupta A, Saha S, Das A, Chowdhury AR. Evaluating the influence on osteocyte mechanobiology within the lacunar-canalicular system for varying lacunar equancy and perilacunar elasticity: a multiscale fluid-structure interaction analysis. J Mech Behav Biomed. 2024;160:15.
Bonanni R, Cariati I, Marini M, Tarantino U, Tancredi V. Microgravity and musculoskeletal health: What strategies should be used for a great challenge? Life. 2023;13:1423.
PubMed PubMed Central Google Scholar
Miao LW, Liu TZ, Sun YH, Cai N, Xuan YY, Wei Z, et al. Simulated microgravity©\induced oxidative stress and loss of osteogenic potential of osteoblasts can be prevented by protection of primary cilia. J Cell Physiol. 2023;238:2692–709.
Comments (0)