Characteristics of 3D-Printed Polycaprolactone Tracheal Scaffolds Implanted

Kamran A, Jennings RW. Tracheomalacia and tracheobronchomalacia in pediatrics: an overview of evaluation, medical management, and surgical treatment. Front Pediatr. 2019;7:512.

PubMed  PubMed Central  Google Scholar 

Khalid U, Uchikov P, Hristov B, Kraev K, Koleva-Ivanova M, Kraeva M, et al. Surgical innovations in tracheal reconstruction: a review on synthetic material fabrication. Medicina (Kaunas). 2023;60:40.

Google Scholar 

Gao M, Zhang H, Dong W, Bai J, Gao B, Xia D, et al. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Sci Rep. 2017;7:5246.

PubMed  PubMed Central  Google Scholar 

Frejo L, Grande DA. 3D-bioprinted tracheal reconstruction: an overview. Bioelectron Med. 2019;5:15.

PubMed  PubMed Central  Google Scholar 

Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380:994–1000.

PubMed  PubMed Central  Google Scholar 

Elliott MJ, Butler CR, Varanou-Jenkins A, Partington L, Carvalho C, Samuel E, et al. Tracheal replacement therapy with a stem cell-seeded graft: lessons from compassionate use application of a GMP-compliant tissue-engineered medicine. Stem Cells Transl Med. 2017;6:1458–64.

PubMed  PubMed Central  CAS  Google Scholar 

Hamilton NJ, Kanani M, Roebuck DJ, Hewitt RJ, Cetto R, Culme-Seymour EJ, et al. Tissue-engineered tracheal replacement in a child: a 4-year follow-up study. Am J Transplant. 2015;15:2750–7.

PubMed  PubMed Central  CAS  Google Scholar 

Dharmadhikari S, Best CA, King N, Henderson M, Johnson J, Breuer CK, et al. Mouse model of tracheal replacement with electrospun nanofiber scaffolds. Ann Otol Rhinol Laryngol. 2019;128:391–400.

PubMed  PubMed Central  Google Scholar 

Omori K, Tada Y, Suzuki T, Nomoto Y, Matsuzuka T, Kobayashi K, et al. Clinical application of in situ tissue engineering using a scaffolding technique for reconstruction of the larynx and trachea. Ann Otol Rhinol Laryngol. 2008;117:673–8.

PubMed  Google Scholar 

Greaney AM, Niklason L. The history of engineered tracheal replacements: interpreting the past and guiding the future. Tissue Eng Part B. 2021;27:341–52.

Google Scholar 

Haryńska A, Kucinska-Lipka J, Sulowska A, Gubanska I, Kostrzewa M, Janik H. Medical-grade PCL based polyurethane system for FDM 3D printing-characterization and fabrication. Materials (Basel). 2019;12: 887.

PubMed  Google Scholar 

Park HS, Lee JS, Jung H, Kim DY, Kim SW, Sultan MT, et al. An omentum-cultured 3D-printed artificial trachea: in vivo bioreactor. Artif Cells Nanomed Biotechnol. 2018;46:S1131–40.

PubMed  CAS  Google Scholar 

Zhang X, Jing H, Luo K, Shi B, Luo Q, Zhu Z, et al. Exosomes from 3T3-J2 promote expansion of tracheal basal cells to facilitate rapid epithelization of 3D-printed double-layer tissue engineered trachea. Mater Sci Eng C Mater Biol Appl. 2021;129: 112371.

PubMed  CAS  Google Scholar 

Gao B, Jing H, Gao M, Wang S, Fu W, Zhang X, et al. Long-segmental tracheal reconstruction in rabbits with pedicled tissue-engineered trachea based on a 3D-printed scaffold. Acta Biomater. 2019;97:177–86.

PubMed  CAS  Google Scholar 

Frejo L, Goldstein T, Swami P, Patel NA, Grande DA, Zeltsman D, et al. A two-stage in vivo approach for implanting a 3D printed tissue-engineered tracheal replacement graft: a proof of concept. Int J Pediatr Otorhinolaryngol. 2022;155:111066.

PubMed  Google Scholar 

Ke D, Yi H, Est-Witte S, George S, Kengla C, Lee SJ. Bioprinted trachea constructs with patientmatched design, mechanical and biological properties. Biofabrication. 2020;12:015022.

CAS  Google Scholar 

Teoh SH, Goh BT, Lim J. Three-dimensional printed polycaprolactone scaffolds for bone regeneration success and future perspective. Tissue Eng Part A. 2019;25:931–5.

PubMed  CAS  Google Scholar 

Chan DS, Fnais N, Ibrahim I, Daniel SJ, Manoukian J. Exploring polycaprolactone in tracheal surgery: a scoping review of in-vivo studies. Int J Pediatr Otorhinolaryngol. 2019;123:38–42.

PubMed  Google Scholar 

Ss V, Vm P. Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells. Colloids Surf B Biointerfaces. 2018;163:107–18.

Google Scholar 

Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J, et al. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci. 2024;12:1425–48.

PubMed  CAS  Google Scholar 

Antheunis H, van der Meer JC, de Geus M, Heise A, Koning CE. Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters. Biomacromol. 2010;11:1118–24.

CAS  Google Scholar 

Hutmacher DW, Goh JC, Teoh SH. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore. 2001;30:183–91.

PubMed  CAS  Google Scholar 

Abbah SA, Lam CX, Hutmacher DW, Goh JC, Wong HK. Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials. 2009;30:5086–93.

PubMed  CAS  Google Scholar 

Reichert JC, Cipitria A, Epari DR, Saifzadeh S, Krishnakanth P, Berner A, et al. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med. 2012;4:141ra193.

Google Scholar 

Reichert JC, Wullschleger ME, Cipitria A, Lienau J, Cheng TK, Schütz MA, et al. Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop. 2011;35:1229–36.

PubMed  Google Scholar 

Pitt CG, Chasalow FI, Hibionnada YM, Klimas DM, Schindler A. Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone) in vivo. J Appl Polym Sci. 1981;26: 3779–87.

CAS  Google Scholar 

Leroux A, Nguyen TN, Rangel A, Cacciapuoti I, Duprez D, Castner DG, et al. Long-term hydrolytic degradation study of polycaprolactone films and fibers grafted with poly (sodium styrene sulfonate): mechanism study and cell response. Biointerphases. 2020;15:061006.

PubMed  PubMed Central  CAS  Google Scholar 

Lykins WR, Bernards DA, Schlesinger EB, Wisniewski K, Desai TA. Tuning polycaprolactone degradation for long acting implantables. Polymer. 2022;262:125473.

CAS  Google Scholar 

Oertli D, Robert UR. Surgery of the thyroid and parathyroid glands. 2nd ed. Berlin, Heidelberg: Springer; 2012.

Google Scholar 

Grillo HC, Wright CD, Vlahakes GJ, MacGillivray TE. Management of congenital tracheal stenosis by means of slide tracheoplasty or resection and reconstruction, with long-term follow-up of growth after slide tracheoplasty. J Thorac Cardiovasc Surg. 2002;123:145–52.

PubMed  Google Scholar 

Maeda M, Grillo HC. Effect of tension on tracheal growth after resection and anastomosis in puppies. J Thorac Cardiovasc Surg. 1973;65:658–68.

PubMed  CAS  Google Scholar 

Comments (0)

No login
gif