Shen HQ, Tang YM, Yang SL, Qian BQ, Song H, Shi SW, et al. Multi-color flow cytometric analysis of cell surface and cytoplasmic antigens in the diagnosis of acute leukemia in children. World J Pediatr. 2005;1:54–9.
Oelschlaegel U, Winter S, Sockel K, Epp K, Schadt J, Rohnert MA, et al. MDS-PB13 score—blood based detection of aberrancies by flow cytometry in patients with suspected and confirmed myelodysplastic neoplasms. Leukemia. 2024;38:446–50. https://doi.org/10.1038/s41375-024-02141-w.
Article CAS PubMed PubMed Central Google Scholar
de Haas V, Pieters R, van der Sluijs-Gelling AJ, Zwaan CM, de Groot-Kruseman HA, Sonneveld E, et al. Flowcytometric evaluation of cerebrospinal fluid in childhood ALL identifies CNS involvement better then conventional cytomorphology. Leukemia. 2021;35:1773–6. https://doi.org/10.1038/s41375-020-01029-9.
Xu XJ, Tang YM, Shen HQ, Song H, Yang SL, Shi SW, et al. Day 22 of induction therapy is important for minimal residual disease assessment by flow cytometry in childhood acute lymphoblastic leukemia. Leuk Res. 2012;36:1022–7. https://doi.org/10.1016/j.leukres.2012.03.014.
Zhang W, Cai J, Wang X, Ma Y, Zhu X, Yu J, et al. Prognostic and therapeutic implications of measurable residual disease levels during remission induction of childhood ALL. Blood. 2025;145:1890–902. https://doi.org/10.1182/blood.2024026381.
Article CAS PubMed Google Scholar
Shen H, Tang Y, Xu X, Wang L, Wang Q, Xu W, et al. Rapid detection of neoplastic cells in serous cavity effusions in children with flow cytometry immunophenotyping. Leuk Lymphoma. 2012;53:1509–14. https://doi.org/10.3109/10428194.2012.661050.
Ying PT, Tang YM. Challenges and overcoming strategies in CAR-T cell therapy for pediatric neuroblastoma. World J Pediatr. 2025;21:123–30. https://doi.org/10.1007/s12519-025-00876-9.
Cai F, Zhang J, Gao H, Shen H. Tumor microenvironment and CAR-T cell immunotherapy in B-cell lymphoma. Eur J Haematol. 2024;112:223–35. https://doi.org/10.1111/ejh.14103.
Article CAS PubMed Google Scholar
Ye W, Wang J, Li W, Shen H. Comparative analysis of flow cytometry and cytomorphology for neuroblastoma cell detection in effusion and bone marrow specimens. Fetal Pediatr Pathol. 2019;38:1–7. https://doi.org/10.1080/15513815.2018.1494231.
Shen H, Tang Y, Xu X, Tang H. Detection of the GD2+/CD56+/CD45- immunophenotype by flow cytometry in cerebrospinal fluids from a patient with retinoblastoma. Pediatr Hematol Oncol. 2013;30:30–2. https://doi.org/10.3109/08880018.2012.737094.
Shen H, Tang Y, Dong A, Li H, Shen D, Yang S, et al. Staging and monitoring of childhood rhabdomyosarcoma with flow cytometry. Oncol Lett. 2014;7:970–6. https://doi.org/10.3892/ol.2014.1854.
Article PubMed PubMed Central Google Scholar
Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20:662–80. https://doi.org/10.1038/s41568-020-0285-7.
Article CAS PubMed Google Scholar
Ng DP, Simonson PD, Tarnok A, Lucas F, Kern W, Rolf N, et al. Recommendations for using artificial intelligence in clinical flow cytometry. Cytom B Clin Cytom. 2024;106:228–38. https://doi.org/10.1002/cyto.b.22166.
Clichet V, Lebon D, Chapuis N, Zhu J, Bardet V, Marolleau JP, et al. Artificial intelligence to empower diagnosis of myelodysplastic syndromes by multiparametric flow cytometry. Haematologica. 2023;108:2435–43. https://doi.org/10.3324/haematol.2022.282370.
Article CAS PubMed PubMed Central Google Scholar
Clichet V, Harrivel V, Delette C, Guiheneuf E, Gautier M, Morel P, et al. Accurate classification of plasma cell dyscrasias is achieved by combining artificial intelligence and flow cytometry. Br J Haematol. 2022;196:1175–83. https://doi.org/10.1111/bjh.17933.
Article CAS PubMed Google Scholar
Haniffa M, Maartens A, Winheim E, Jardine L. Decoding the human prenatal immune system with single-cell multi-omics. Nat Rev Immunol. 2025;25:285–97. https://doi.org/10.1038/s41577-024-01099-1.
Article CAS PubMed Google Scholar
Monneret G, Gossez M, Aghaeepour N, Gaudilliere B, Venet F. How clinical flow cytometry rebooted sepsis immunology. Cytom Part A J Int Soc Anal Cytol. 2019;95:431–41. https://doi.org/10.1002/cyto.a.23749.
Schmidt DE, Heitink-Polle KMJ, Nicolet BP, Porcelijn L, Bruin MCA, Weterings N, et al. Increased effector memory CD4(+) T cells are associated with chronic childhood immune thrombocytopenia. J Thromb Haemost JTH. 2025;S1538–7836(25):00362–9. https://doi.org/10.1016/j.jtha.2025.06.004.
Olaloye OO, Liu P, Toothaker JM, McCourt BT, McCourt CC, Xiao J, et al. CD16+CD163+ monocytes traffic to sites of inflammation during necrotizing enterocolitis in premature infants. J Exp Med. 2021;218:e20200344. https://doi.org/10.1084/jem.20200344.
Article CAS PubMed PubMed Central Google Scholar
Leong JY, Chen P, Yeo JG, Ally F, Chua C, Nur Hazirah S, et al. Immunome perturbation is present in patients with juvenile idiopathic arthritis who are in remission and will relapse upon anti-TNFalpha withdrawal. Ann Rheum Dis. 2019;78:1712–21. https://doi.org/10.1136/annrheumdis-2019-216059.
Article CAS PubMed Google Scholar
Seitz L, Gaitan D, Berkemeier CM, Berger CT, Recher M. Cluster analysis of flowcytometric immunophenotyping with extended T cell subsets in suspected immunodeficiency. Immunity Inflamm Dis. 2023;11:e1106. https://doi.org/10.1002/iid3.1106.
Zhou Y, Song HM. Type I interferon pathway in pediatric systemic lupus erythematosus. World J Pediatrics WJP. 2024;20:653–68. https://doi.org/10.1007/s12519-024-00811-4.
Article CAS PubMed Google Scholar
Dossybayeva K, Zhubanova G, Mussayeva A, Mukusheva Z, Dildabayeva A, Nauryzbayeva G, et al. Nonspecific increase of alphabetaTCR(+) double-negative T cells in pediatric rheumatic diseases. World J Pediatr. 2024;20:1283–92. https://doi.org/10.1007/s12519-024-00854-7.
Article CAS PubMed PubMed Central Google Scholar
Shang H, Cui W. Chinese expert consensus on laboratory detection of peripheral blood cellular immune function in solid tumors. Chin J Lab Med. 2023;46:1235–48. https://doi.org/10.3760/cma.j.cn114452-20230719-00016.
Wang Y, Li R, Tong R, Chen T, Sun M, Luo L, et al. Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age. Nat Immunol. 2025;26:308–22. https://doi.org/10.1038/s41590-024-02059-6.
Article CAS PubMed PubMed Central Google Scholar
Karagiannis TT, Dowrey TW, Villacorta-Martin C, Montano M, Reed E, Belkina AC, et al. Multi-modal profiling of peripheral blood cells across the human lifespan reveals distinct immune cell signatures of aging and longevity. EBioMedicine. 2023;90:104514. https://doi.org/10.1016/j.ebiom.2023.104514.
Article CAS PubMed PubMed Central Google Scholar
Han G, Spitzer MH, Bendall SC, Fantl WJ, Nolan GP. Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat Protoc. 2018;13:2121–48. https://doi.org/10.1038/s41596-018-0016-7.
Article CAS PubMed PubMed Central Google Scholar
Shen HQ, Tian YF, Shu Q. Application of mass cytometry for clinical diagnosis, treatment and research in pediatric diseases. Chin J Lab Med. 2024;47:1386–90. https://doi.org/10.3760/cma.j.cn114452-20240510-00235.
Good Z, Sarno J, Jager A, Samusik N, Aghaeepour N, Simonds EF, et al. Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med. 2018;24:474–83. https://doi.org/10.1038/nm.4505.
Comments (0)