Chen M, Eugster EA. Central precocious puberty: update on diagnosis and treatment. Paediatr Drugs. 2015;17:273–81.
PubMed PubMed Central Google Scholar
Bradley SH, Lawrence N, Steele C, Mohamed Z. Precocious puberty. BMJ. 2020;368:l6597.
Heo S, Lee YS, Yu J. Basal serum luteinizing hormone value as the screening biomarker in female central precocious puberty. Ann Pediatr Endocrinol Metab. 2019;24:164–71.
PubMed PubMed Central Google Scholar
Zhan S, Huang K, Wu W, Zhang D, Liu A, Dorazio RM, et al. The use of morning urinary gonadotropins and sex hormones in the management of early puberty in Chinese girls. J Clin Endocrinol Metab. 2021;106:e4520–30.
PubMed PubMed Central Google Scholar
Xia Y, Li L, Li D, Liu Y, Hao L. Serum metabolomic analysis of healthy and central precocious puberty girls. Clin Endocrinol (Oxf). 2025;102:664–72.
Huang X, Chen J, Zou H, Huang P, Luo H, Li H, et al. Gut microbiome combined with metabolomics reveals biomarkers and pathways in central precocious puberty. J Transl Med. 2023;21:316.
PubMed PubMed Central Google Scholar
Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3:1191–212.
PubMed PubMed Central Google Scholar
Qi L, Chen Y. Circulating bile acids as biomarkers for disease diagnosis and prevention. J Clin Endocrinol Metab. 2023;108:251–70.
Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019;25:1225–33.
PubMed PubMed Central Google Scholar
Sèdes L, Martinot E, Baptissart M, Baron S, Caira F, Beaudoin C, et al. Bile acids and male fertility: from mouse to human? Mol Aspects Med. 2017;56:101–9.
Liu X, Xue R, Yang C, Gu J, Chen S, Zhang S. Cholestasis-induced bile acid elevates estrogen level via farnesoid X receptor-mediated suppression of the estrogen sulfotransferase SULT1E1. J Biol Chem. 2018;293:12759–69.
PubMed PubMed Central Google Scholar
Wang S, Yuan X, Lu D, Guo L, Wu B. Farnesoid X receptor regulates SULT1E1 expression through inhibition of PGC1α binding to HNF4α. Biochem Pharmacol. 2017;145:202–9.
Davis RA, Elliott TS, Lattier GR, Showalter RB, Kern F Jr. Regulation of bile acid synthesis via direct effects on the microsomal membrane. Biochemistry. 1986;25:1632–6.
Chico Y, Fresnedo O, Botham K, Lacort M, Ochoa B. Regulation of bile acid synthesis by estradiol and progesterone in primary cultures of rat hepatocytes. Exp Clin Endocrinol Diabetes. 1996;104:137–44.
Yang J, Xiang D, Xiang D, He W, Liu Y, Lan L, et al. Baicalin protects against 17α-ethinylestradiol-induced cholestasis via the sirtuin 1/hepatic nuclear receptor-1α/farnesoid X receptor pathway. Front Pharmacol. 2019;10:1685.
Muchova L, Vanova K, Suk J, Micuda S, Dolezelova E, Fuksa L, et al. Protective effect of heme oxygenase induction in ethinylestradiol-induced cholestasis. J Cell Mol Med. 2015;19:924–33.
PubMed PubMed Central Google Scholar
Di Guida F, Pirozzi C, Magliocca S, Santoro A, Lama A, Russo R, et al. Galactosylated pro-drug of ursodeoxycholic acid: design, synthesis, characterization, and pharmacological effects in a rat model of estrogen-induced cholestasis. Mol Pharm. 2018;15:21–30.
Song X, Vasilenko A, Chen Y, Valanejad L, Verma R, Yan B, et al. Transcriptional dynamics of bile salt export pump during pregnancy: mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology. 2014;60:1993–2007.
Vanden Brink H, Vandeputte D, Brito IL, Ronnekleiv OK, Roberson MS, Lomniczi A. Changes in the bile acid pool and timing of female puberty: potential novel role of hypothalamic TGR5. Endocrinology. 2024;165:bqae098.
Morris AI, Little JM, Lester R. Development of the bile acid pool in rats from neonatal life through puberty to maturity. Digestion. 1983;28:216–24.
Consensus statement for the diagnosis and treatment of central precocious puberty (2015). Zhonghua Er Ke Za Zhi. 2015;53:412–8 (in Chinese).
Rummo P, Sze J, Elbel B. Association between a policy to subsidize supermarkets in underserved areas and childhood obesity risk. JAMA Pediatr. 2022;176:646–53.
PubMed PubMed Central Google Scholar
Zhang D, Wang H, Liu A, Wang S, Xu C, Lan K, et al. The chronic consumption of dietary fructose promotes the gut Clostridium species imbalance and bile acid alterations in developing nonalcoholic fatty liver disease. J Nutr Biochem. 2023;121:109434.
Liu AN, Xu CF, Liu YR, Sun DQ, Jiang L, Tang LJ, et al. Secondary bile acids improve risk prediction for non-invasive identification of mild liver fibrosis in nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2023;57:872–85.
PubMed PubMed Central Google Scholar
Pang Z, Lu Y, Zhou G, Hui F, Xu L, Viau C, et al. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024;52:W398–406.
Simó R, Sáez-López C, Barbosa-Desongles A, Hernández C, Selva DM. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol Metab. 2015;26:376–83.
Chen W, Wang D, Deng X, Zhang H, Dong D, Su T, et al. Bile acid profiling as an effective biomarker for staging in pediatric inflammatory bowel disease. Gut Microbes. 2024;16:2323231.
PubMed PubMed Central Google Scholar
Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152:1679–94.e3.
Bauman D. Impact of obesity on female puberty and pubertal disorders. Best Pract Res Clin Obstet Gynaecol. 2023;91:102400.
Zu Y, Yang J, Zhang C, Liu D. The pathological mechanisms of estrogen-induced cholestasis: current perspectives. Front Pharmacol. 2021;12:761255.
PubMed PubMed Central Google Scholar
Li Y, Shen L, Huang C, Li X, Chen J, Li SC, et al. Altered nitric oxide induced by gut microbiota reveals the connection between central precocious puberty and obesity. Clin Transl Med. 2021;11:e299.
PubMed PubMed Central Google Scholar
Dong G, Zhang J, Yang Z, Feng X, Li J, Li D, et al. The association of gut microbiota with idiopathic central precocious puberty in girls. Front Endocrinol (Lausanne). 2019;10:941.
Zheng X, Chen T, Jiang R, Zhao A, Wu Q, Kuang J, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 2021;33:791–803.e7.
Zheng X, Chen T, Zhao A, Ning Z, Kuang J, Wang S, et al. Hyocholic acid species as novel biomarkers for metabolic disorders. Nat Commun. 2021;12:1487.
PubMed PubMed Central Google Scholar
Wang Q, Lin H, Shen C, Zhang M, Wang X, Yuan M, et al. Gut microbiota regulates postprandial GLP-1 response via ileal bile acid-TGR5 signaling. Gut Microbes. 2023;15:2274124.
PubMed PubMed Central Google Scholar
Houk CP, Kunselman AR, Lee PA. Adequacy of a single unstimulated luteinizing hormone level to diagnose central precocious puberty in girls. Pediatrics. 2009;123:e1059–63.
Pasternak Y, Friger M, Loewenthal N, Haim A, Hershkovitz E. The utility of basal serum LH in prediction of central precocious puberty in girls. Eur J Endocrinol. 2012;166:295–9.
Singh GK, Jimenez M, Newman R, Handelsman DJ. Immunoreactive LH in long-term frozen human urine samples. Drug Test Anal. 2014;6:336–41.
Bordini B, Littlejohn E, Rosenfield RL. Blunted sleep-related luteinizing hormone rise in healthy premenarcheal pubertal girls with elevated body mass index. J Clin Endocrinol Metab. 2009;94:1168–75.
PubMed PubMed Central Google Scholar
Fu JF, Liang JF, Zhou XL, Prasad HC, Jin JH, Dong GP, et al. Impact of BMI on gonadorelin-stimulated LH peak in premenarcheal girls with idiopathic central precocious puberty. Obesity (Silver Spring). 2015;23:637–43.
Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol. 2023;21:236–47.
Yang Y, Zhang J. Bile acid metabolism and circadian rhythms. Am J Physiol Gastrointest Liver Physiol. 2020;319:G549–63.
Comments (0)