Woodgate P, Jardine LA. Neonatal jaundice: phototherapy. BMJ. Clin Evid. 2015;2015:0319.
Olusanya BO, Teeple S, Kassebaum NJ. The contribution of neonatal jaundice to global child mortality: findings from the GBD 2016 study. Pediatrics. 2018;141:e20171471.
Bhatt P, Umscheid J, Ayensu M, Parmar N, Vasudeva R, Donda K, et al. Trends and resource utilization for neonatal jaundice hospitalizations in the United States. Hosp Pediatr. 2022;12:392–9.
Khan AW, Bhatt P, Yagnik PY, Ayensu M, Adjetey NA, Agyekum AA, et al. Trends in hospitalization for neonatal jaundice and kernicterus in the United States, 2006–2017. Pediatrics. 2021;147:744–5.
American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114:297–316.
Kemper AR, Newman TB, Slaughter JL, Maisels MJ, Watchko JF, Downs SM, et al. Clinical practice guideline revision: management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2022;150:e2022058859.
Castillo Cuadrado ME, Bhutani VK, Aby JL, Vreman HJ, Wong RJ, Stevenson DK. Evaluation of a new end-tidal carbon monoxide monitor from the bench to the bedside. Acta Paediatr. 2015;104:e279–82.
Bhutani VK, Srinivas S, Castillo Cuadrado ME, Aby JL, Wong RJ, Stevenson DK. Identification of neonatal haemolysis: an approach to predischarge management of neonatal hyperbilirubinemia. Acta Paediatr. 2016;105:e189–94.
Christensen RD, Lambert DK, Henry E, Yaish HM, Prchal JT. End-tidal carbon monoxide as an indicator of the hemolytic rate. Blood Cells Mol Dis. 2015;54:292–6.
Tidmarsh GF, Wong RJ, Stevenson DK. End-tidal carbon monoxide and hemolysis. J Perinatol. 2014;34:577–81.
Du L, Ma X, Shen X, Bao Y, Chen L, Bhutani VK. Neonatal hyperbilirubinemia management: clinical assessment of bilirubin production. Semin Perinatol. 2021;45:151351.
Christensen RD, Bahr TM, Pakdeeto S, Supapannachart S, Zhang H. Perinatal hemolytic disorders and identification using end tidal breath carbon monoxide. Curr Pediatr Rev. 2023;19:376–87.
Kaplan M, Herschel M, Hammerman C, Hoyer JD, Stevenson DK. Hyperbilirubinemia among African American, glucose-6-phosphate dehydrogenase-deficient neonates. Pediatrics. 2004;114:e213–9.
Elsaie AL, Taleb M, Nicosia A, Zangaladze A, Pease ME, Newton K, et al. Comparison of end-tidal carbon monoxide measurements with direct antiglobulin tests in the management of neonatal hyperbilirubinemia. J Perinatol. 2020;40:1513–7.
Bhatia A, Chua MC, Dela Puerta R, Rajadurai VS. Noninvasive detection of hemolysis with ETCOc measurement in neonates at risk for significant hyperbilirubinemia. Neonatology. 2020;117:612–8.
Bao Y, Zhu J, Ma L, Zhang H, Sun L, Xu C, et al. An end-tidal carbon monoxide nomogram for term and late-preterm Chinese newborns. J Pediatr. 2022;250:16–21.e3.
Bahr TM, Shakib JH, Stipelman CH, Kawamoto K, Lauer S, Christensen RD. Improvement initiative: end-tidal carbon monoxide measurement in newborns receiving phototherapy. J Pediatr. 2021;238:168–73.e2.
Zhan YL, Peng HB, Jin ZC, Su JF, Tan XY, Zhao L, et al. Higher ETCOc predicts longer phototherapy treatment in neonatal hyperbilirubinemia. Front Pediatr. 2023;11:1154350.
PubMed PubMed Central Google Scholar
Subspecialty Group of Neonatology, The Society of Pediatrics, Chinese Medical Association. The experts consensus on the management of neonatal hyperbilirubinemia. Zhonghua Er Ke Za Zhi. 2014;52:745–8.
Bhutani VK, Johnson L, Sivieri EM. Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics. 1999;103:6–14.
Subspecialty Group of Neonatology, The Society of Pediatrics, Chinese Medical Association. The experts consensus on the management of neonatal hyperbilirubinemia. Zhonghua Er Ke Za Zhi. 2014;52:745–8.
Maisels MJ, Pathak A, Nelson NM, Nathan DG, Smith CA. Endogenous production of carbon monoxide in normal and erythroblastotic newborn infants. J Clin Invest. 1971;50:1–8.
CAS PubMed PubMed Central Google Scholar
Christensen RD, Bahr TM, Wong RJ, Vreman HJ, Bhutani VK, Stevenson DK. A “gold standard” test for diagnosing and quantifying hemolysis in neonates and infants. J Perinatol. 2023;43:1541–7.
Bhutani VK, Wong RJ, Vreman HJ, Stevenson DK. Bilirubin production and hour-specific bilirubin levels. J Perinatol. 2015;35:735–8.
Christensen RD, Malleske DT, Lambert DK, Baer VL, Prchal JT, Denson LE, et al. Measuring end-tidal carbon monoxide of jaundiced neonates in the birth hospital to identify those with hemolysis. Neonatology. 2016;109:1–5.
Kaplan M, Hoyer JD, Herschel M, Hammerman C, Stevenson DK. Glucose-6-phosphate dehydrogenase activity in term and near-term, male African American neonates. Clin Chim Acta. 2005;355:113–7.
Cheng X, Lin B, Yang Y, Yu Y, Fu Y, Yang C. End-tidal carbon monoxide concentrations measured within 48 hours of birth predict hemolytic hyperbilirubinemia. J Perinatol. 2024;44:897–901.
Stevenson DK, Fanaroff AA, Maisels MJ, Young BW, Wong RJ, Vreman HJ, et al. Prediction of hyperbilirubinemia in near-term and term infants. Pediatrics. 2001;108:31–9.
Okuyama H, Yonetani M, Uetani Y, Nakamura H. End-tidal carbon monoxide is predictive for neonatal non-hemolytic hyperbilirubinemia. Pediatr Int. 2001;43:329–33.
Liu Z, Yu C, Li Q, Cai R, Qu Y, Wang W, et al. Chinese newborn screening for the incidence of G6PD deficiency and variant of G6PD gene from 2013 to 2017. Hum Mutat. 2020;41:212–21.
He Y, Zhang Y, Chen X, Wang Q, Ling L, Xu Y. Glucose-6-phosphate dehydrogenase deficiency in the Han Chinese population: molecular characterization and genotype-phenotype association throughout an activity distribution. Sci Rep. 2020;10:17106.
CAS PubMed PubMed Central Google Scholar
Subspecialty Group of Neonatology, the Society of Pediatrics, Chinese Medical Association; Editorial Board, Chinese Journal of Pediatrics. Guidelines on the clinical management of neonatal hyperbilirubinemia (2025). Zhonghua Er Ke Za Zhi. 2025;63:338–350.
Comments (0)