Miller GA. The magical number seven, plus or minus two: Some limits on our capacity for processing information. 1956 Psychol Rev 1994, 101: 343–352.
Tulving E. Episodic memory: From mind to brain. Annu Rev Psychol 2002, 53: 1–25.
McGaugh JL. Memory—a century of consolidation. Science 2000, 287: 248–251.
Davis RL, Zhong Y. The biology of forgetting-a perspective. Neuron 2017, 95: 490–503.
CAS PubMed PubMed Central Google Scholar
Berry JA, Guhle DC, Davis RL. Active forgetting and neuropsychiatric diseases. Mol Psychiatry 2024, 29: 2810–2820.
CAS PubMed PubMed Central Google Scholar
Berry JA, Cervantes-Sandoval I, Nicholas EP, Davis RL. Dopamine is required for learning and forgetting in Drosophila. Neuron 2012, 74: 530–542.
CAS PubMed PubMed Central Google Scholar
Shuai Y, Lu B, Hu Y, Wang L, Sun K, Zhong Y. Forgetting is regulated through rac activity in Drosophila. Cell 2010, 140: 579–589.
Liu Y, Du S, Lv L, Lei B, Shi W, Tang Y. Hippocampal activation of Rac1 regulates the forgetting of object recognition memory. Curr Biol 2016, 26: 2351–2357.
Frankland PW, Köhler S, Josselyn SA. Hippocampal neurogenesis and forgetting. Trends Neurosci 2013, 36: 497–503.
Sabandal JM, Berry JA, Davis RL. Dopamine-based mechanism for transient forgetting. Nature 2021, 591: 426–430.
CAS PubMed PubMed Central Google Scholar
Ryan TJ, Frankland PW. Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci 2022, 23: 173–186.
Kitazono T, Hara-Kuge S, Matsuda O, Inoue A, Fujiwara M, Ishihara T. Multiple signaling pathways coordinately regulate forgetting of olfactory adaptation through control of sensory responses in Caenorhabditis elegans. J Neurosci 2017, 37: 10240–10251.
CAS PubMed PubMed Central Google Scholar
Patel U, Perez L, Farrell S, Steck D, Jacob A, Rosiles T, et al. Transcriptional changes before and after forgetting of a long-term sensitization memory in Aplysia californica. Neurobiol Learn Mem 2018, 155: 474–485.
CAS PubMed PubMed Central Google Scholar
Schwartz BL, Metcalfe J. Tip-of-the-tongue (TOT) states: Retrieval, behavior, and experience. Mem Cognit 2011, 39: 737–749.
Hodges JR, Warlow CP. Syndromes of transient Amnesia: Towards a classification. A study of 153 cases. J Neurol Neurosurg Psychiatry 1990, 53: 834–843.
CAS PubMed PubMed Central Google Scholar
Arena JE, Rabinstein AA. Transient global Amnesia. Mayo Clin Proc 2015, 90: 264–272.
Spiegel DR, Smith J, Wade RR, Cherukuru N, Ursani A, Dobruskina Y, et al. Transient global Amnesia: Current perspectives. Neuropsychiatr Dis Treat 2017, 13: 2691–2703.
CAS PubMed PubMed Central Google Scholar
Sparaco M, Pascarella R, Muccio CF, Zedde M. Forgetting the unforgettable: Transient global Amnesia part II: A clinical road map. J Clin Med 2022, 11: 3940.
PubMed PubMed Central Google Scholar
Hoyer C, Higashida K, Fabbian F, De Giorgi A, Sandikci V, Ebert A, et al. Chronobiology of transient global Amnesia. J Neurol 2022, 269: 361–367.
Della Marca G, Mazza M, Losurdo A, Testani E, Broccolini A, Frisullo G, et al. Sleep modifications in acute transient global Amnesia. J Clin Sleep Med 2013, 9: 921–927.
PubMed PubMed Central Google Scholar
Marinella MA. Transient global Amnesia and a father’s worst nightmare. N Engl J Med 2004, 350: 843–844.
Tynas R, Panegyres PK. Factors determining recurrence in transient global Amnesia. BMC Neurol 2020, 20: 83.
PubMed PubMed Central Google Scholar
Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 2018, 19: 453–469.
Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Res 2001, 916: 172–191.
Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, et al. Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 2003, 285: R939–R949.
Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 2005, 8: 476–483.
CAS PubMed PubMed Central Google Scholar
Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA, McMahon DG, et al. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 2006, 16: 599–605.
Jones JR, Simon T, Lones L, Herzog ED. SCN VIP neurons are essential for normal light-mediated resetting of the circadian system. J Neurosci 2018, 38: 7986–7995.
CAS PubMed PubMed Central Google Scholar
Vosko A, van Diepen HC, Kuljis D, Chiu AM, Heyer D, Terra H, et al. Role of vasoactive intestinal peptide in the light input to the circadian system. Eur J Neurosci 2015, 42: 1839–1848.
PubMed PubMed Central Google Scholar
LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 2014, 15: 443–454.
CAS PubMed PubMed Central Google Scholar
Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D, et al. Light affects mood and learning through distinct retina-brain pathways. Cell 2018, 175: 71-84.e18.
CAS PubMed PubMed Central Google Scholar
Blume C, Garbazza C, Spitschan M. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl) 2019, 23: 147–156.
Fisk AS, Tam SKE, Brown LA, Vyazovskiy VV, Bannerman DM, Peirson SN. Light and cognition: Roles for circadian rhythms, sleep, and arousal. Front Neurol 2018, 9: 56.
PubMed PubMed Central Google Scholar
Huang X, Tao Q, Ren C. A comprehensive overview of the neural mechanisms of light therapy. Neurosci Bull 2024, 40: 350–362.
Todd WD, Venner A, Anaclet C, Broadhurst RY, De Luca R, Bandaru SS, et al. Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun 2020, 11: 4410.
CAS PubMed PubMed Central Google Scholar
Hermanstyne TO, Simms CL, Carrasquillo Y, Herzog ED, Nerbonne JM. Distinct firing properties of vasoactive intestinal peptide-expressing neurons in the suprachiasmatic nucleus. J Biol Rhythms 2016, 31: 57–67.
Maren S. Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 2001, 24: 897–931.
Kalsbeek A, Teclemariam-Mesbah R, Pévet P. Efferent projections of the suprachiasmatic nucleus in the golden Hamster (Mesocricetus auratus). J Comp Neurol 1993, 332: 293–314.
Comments (0)