Suprachiasmatic Nucleus Vasoactive Intestinal Peptide Neurons Mediate Light-induced Transient Forgetting

Miller GA. The magical number seven, plus or minus two: Some limits on our capacity for processing information. 1956 Psychol Rev 1994, 101: 343–352.

CAS  PubMed  Google Scholar 

Tulving E. Episodic memory: From mind to brain. Annu Rev Psychol 2002, 53: 1–25.

PubMed  Google Scholar 

McGaugh JL. Memory—a century of consolidation. Science 2000, 287: 248–251.

CAS  PubMed  Google Scholar 

Davis RL, Zhong Y. The biology of forgetting-a perspective. Neuron 2017, 95: 490–503.

CAS  PubMed  PubMed Central  Google Scholar 

Berry JA, Guhle DC, Davis RL. Active forgetting and neuropsychiatric diseases. Mol Psychiatry 2024, 29: 2810–2820.

CAS  PubMed  PubMed Central  Google Scholar 

Berry JA, Cervantes-Sandoval I, Nicholas EP, Davis RL. Dopamine is required for learning and forgetting in Drosophila. Neuron 2012, 74: 530–542.

CAS  PubMed  PubMed Central  Google Scholar 

Shuai Y, Lu B, Hu Y, Wang L, Sun K, Zhong Y. Forgetting is regulated through rac activity in Drosophila. Cell 2010, 140: 579–589.

CAS  PubMed  Google Scholar 

Liu Y, Du S, Lv L, Lei B, Shi W, Tang Y. Hippocampal activation of Rac1 regulates the forgetting of object recognition memory. Curr Biol 2016, 26: 2351–2357.

CAS  PubMed  Google Scholar 

Frankland PW, Köhler S, Josselyn SA. Hippocampal neurogenesis and forgetting. Trends Neurosci 2013, 36: 497–503.

CAS  PubMed  Google Scholar 

Sabandal JM, Berry JA, Davis RL. Dopamine-based mechanism for transient forgetting. Nature 2021, 591: 426–430.

CAS  PubMed  PubMed Central  Google Scholar 

Ryan TJ, Frankland PW. Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci 2022, 23: 173–186.

CAS  PubMed  Google Scholar 

Kitazono T, Hara-Kuge S, Matsuda O, Inoue A, Fujiwara M, Ishihara T. Multiple signaling pathways coordinately regulate forgetting of olfactory adaptation through control of sensory responses in Caenorhabditis elegans. J Neurosci 2017, 37: 10240–10251.

CAS  PubMed  PubMed Central  Google Scholar 

Patel U, Perez L, Farrell S, Steck D, Jacob A, Rosiles T, et al. Transcriptional changes before and after forgetting of a long-term sensitization memory in Aplysia californica. Neurobiol Learn Mem 2018, 155: 474–485.

CAS  PubMed  PubMed Central  Google Scholar 

Schwartz BL, Metcalfe J. Tip-of-the-tongue (TOT) states: Retrieval, behavior, and experience. Mem Cognit 2011, 39: 737–749.

PubMed  Google Scholar 

Hodges JR, Warlow CP. Syndromes of transient Amnesia: Towards a classification. A study of 153 cases. J Neurol Neurosurg Psychiatry 1990, 53: 834–843.

CAS  PubMed  PubMed Central  Google Scholar 

Arena JE, Rabinstein AA. Transient global Amnesia. Mayo Clin Proc 2015, 90: 264–272.

PubMed  Google Scholar 

Spiegel DR, Smith J, Wade RR, Cherukuru N, Ursani A, Dobruskina Y, et al. Transient global Amnesia: Current perspectives. Neuropsychiatr Dis Treat 2017, 13: 2691–2703.

CAS  PubMed  PubMed Central  Google Scholar 

Sparaco M, Pascarella R, Muccio CF, Zedde M. Forgetting the unforgettable: Transient global Amnesia part II: A clinical road map. J Clin Med 2022, 11: 3940.

PubMed  PubMed Central  Google Scholar 

Hoyer C, Higashida K, Fabbian F, De Giorgi A, Sandikci V, Ebert A, et al. Chronobiology of transient global Amnesia. J Neurol 2022, 269: 361–367.

PubMed  Google Scholar 

Della Marca G, Mazza M, Losurdo A, Testani E, Broccolini A, Frisullo G, et al. Sleep modifications in acute transient global Amnesia. J Clin Sleep Med 2013, 9: 921–927.

PubMed  PubMed Central  Google Scholar 

Marinella MA. Transient global Amnesia and a father’s worst nightmare. N Engl J Med 2004, 350: 843–844.

CAS  PubMed  Google Scholar 

Tynas R, Panegyres PK. Factors determining recurrence in transient global Amnesia. BMC Neurol 2020, 20: 83.

PubMed  PubMed Central  Google Scholar 

Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 2018, 19: 453–469.

CAS  PubMed  Google Scholar 

Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Res 2001, 916: 172–191.

CAS  PubMed  Google Scholar 

Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, et al. Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 2003, 285: R939–R949.

CAS  PubMed  Google Scholar 

Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 2005, 8: 476–483.

CAS  PubMed  PubMed Central  Google Scholar 

Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA, McMahon DG, et al. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 2006, 16: 599–605.

CAS  PubMed  Google Scholar 

Jones JR, Simon T, Lones L, Herzog ED. SCN VIP neurons are essential for normal light-mediated resetting of the circadian system. J Neurosci 2018, 38: 7986–7995.

CAS  PubMed  PubMed Central  Google Scholar 

Vosko A, van Diepen HC, Kuljis D, Chiu AM, Heyer D, Terra H, et al. Role of vasoactive intestinal peptide in the light input to the circadian system. Eur J Neurosci 2015, 42: 1839–1848.

PubMed  PubMed Central  Google Scholar 

LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 2014, 15: 443–454.

CAS  PubMed  PubMed Central  Google Scholar 

Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D, et al. Light affects mood and learning through distinct retina-brain pathways. Cell 2018, 175: 71-84.e18.

CAS  PubMed  PubMed Central  Google Scholar 

Blume C, Garbazza C, Spitschan M. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl) 2019, 23: 147–156.

PubMed  Google Scholar 

Fisk AS, Tam SKE, Brown LA, Vyazovskiy VV, Bannerman DM, Peirson SN. Light and cognition: Roles for circadian rhythms, sleep, and arousal. Front Neurol 2018, 9: 56.

PubMed  PubMed Central  Google Scholar 

Huang X, Tao Q, Ren C. A comprehensive overview of the neural mechanisms of light therapy. Neurosci Bull 2024, 40: 350–362.

PubMed  Google Scholar 

Todd WD, Venner A, Anaclet C, Broadhurst RY, De Luca R, Bandaru SS, et al. Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun 2020, 11: 4410.

CAS  PubMed  PubMed Central  Google Scholar 

Hermanstyne TO, Simms CL, Carrasquillo Y, Herzog ED, Nerbonne JM. Distinct firing properties of vasoactive intestinal peptide-expressing neurons in the suprachiasmatic nucleus. J Biol Rhythms 2016, 31: 57–67.

CAS  PubMed  Google Scholar 

Maren S. Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 2001, 24: 897–931.

CAS  PubMed  Google Scholar 

Kalsbeek A, Teclemariam-Mesbah R, Pévet P. Efferent projections of the suprachiasmatic nucleus in the golden Hamster (Mesocricetus auratus). J Comp Neurol 1993, 332: 293–314.

CAS  PubMed 

Comments (0)

No login
gif