Meyer ML, Lieberman MD. Social working memory: Neurocognitive networks and directions for future research. Front Psychol 2012, 3: 571.
PubMed PubMed Central Google Scholar
Baddeley A. Working memory: Theories, models, and controversies. Annu Rev Psychol 2012, 63: 1–29.
Baddeley AD, Hitch G. Working memory. Psychology of learning and motivation. Amsterdam: Elsevier, 1974: 47–89.
Heleven E, Van Overwalle F. The person within: Memory codes for persons and traits using fMRI repetition suppression. Soc Cogn Affect Neurosci 2016, 11: 159–171.
Krol SA, Meyer ML, Lieberman MD, Bartz JA. Social working memory predicts social network size in humans. Adapt Hum Behav Physiol 2018, 4: 387–399.
Meyer ML, Spunt RP, Berkman ET, Taylor SE, Lieberman MD. Evidence for social working memory from a parametric functional MRI study. Proc Natl Acad Sci USA 2012, 109: 1883–1888.
CAS PubMed PubMed Central Google Scholar
Meyer ML, Taylor SE, Lieberman MD. Social working memory and its distinctive link to social cognitive ability: an fMRI study. Soc Cogn Affect Neurosci 2015, 10: 1338–1347.
PubMed PubMed Central Google Scholar
Meyer ML, Collier E. Theory of minds: Managing mental state inferences in working memory is associated with the dorsomedial subsystem of the default network and social integration. Soc Cogn Affect Neurosci 2020, 15: 63–73.
PubMed PubMed Central Google Scholar
Van Overwalle F, Ma N, Baetens K. Nice or nerdy? The neural representation of social and competence traits. Soc Neurosci 2016, 11: 567–578.
He J, Guo D, Zhai S, Shen M, Gao Z. Development of social working memory in preschoolers and its relation to theory of mind. Child Dev 2019, 90: 1319–1332.
Ye T, Li P, Zhang Q, Gu Q, Lu X, Gao Z. Relation between working memory capacity of biological movements and fluid intelligence. Front Psychol 2019, 10: 2313.
PubMed PubMed Central Google Scholar
Lieberman MD. Social cognitive neuroscience: A review of core processes. Annu Rev Psychol 2007, 58: 259–289.
Gao Z, Ye T, Shen M, Perry A. Working memory capacity of biological movements predicts empathy traits. Psychon Bull Rev 2016, 23: 468–475.
Gong L, Guo D, Gao Z, Wei K. Atypical development of social and nonsocial working memory capacity among preschoolers with autism spectrum disorders. Autism Res 2023, 16: 327–339.
Thornton MA, Conway ARA. Working memory for social information: Chunking or domain-specific buffer? NeuroImage 2013, 70: 233–239.
Xin F, Lei X. Competition between frontoparietal control and default networks supports social working memory and empathy. Soc Cogn Affect Neurosci 2015, 10: 1144–1152.
PubMed PubMed Central Google Scholar
Smith R, Lane RD, Alkozei A, Bao J, Smith C, Sanova A, et al. Maintaining the feelings of others in working memory is associated with activation of the left anterior Insula and left frontal-parietal control network. Soc Cogn Affect Neurosci 2017, 12: 848–860.
PubMed PubMed Central Google Scholar
Hall JA, Schwartz R. Empathy present and future. J Soc Psychol 2019, 159: 225–243.
Decety J. The neuroevolution of empathy. Ann N Y Acad Sci 2011, 1231: 35–45.
Decety J, Jackson PL. The functional architecture of human empathy. Behav Cogn Neurosci Rev 2004, 3: 71–100.
Decety J, Lamm C. Human empathy through the lens of social neuroscience. Sci World J 2006, 6: 1146–1163.
Smith A. Cognitive empathy and emotional empathy in human behavior and evolution. Psychol Rec 2006, 56: 3–21.
Mumford JA, Nichols TE. Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. Neuroimage 2008, 39: 261–268.
Xie W, Zhang W. Familiarity increases the number of remembered Pokémon in visual short-term memory. Mem Cognit 2017, 45: 677–689.
Jospe K, Genzer S, Klein Selle N, Ong D, Zaki J, Perry A. The contribution of linguistic and visual cues to physiological synchrony and empathic accuracy. Cortex 2020, 132: 296–308.
Zaki J, Weber J, Bolger N, Ochsner K. The neural bases of empathic accuracy. Proc Natl Acad Sci USA 2009, 106: 11382–11387.
CAS PubMed PubMed Central Google Scholar
Pan H, Chen Z, Jospe K, Gao Q, Sheng J, Gao Z, et al. Mood congruency affects physiological synchrony but not empathic accuracy in a naturalistic empathy task. Biol Psychol 2023, 184: 108720.
Martin-Key NA, Allison G, Fairchild G. Empathic accuracy in female adolescents with conduct disorder and sex differences in the relationship between conduct disorder and empathy. J Abnorm Child Psychol 2020, 48: 1155–1167.
CAS PubMed PubMed Central Google Scholar
Ong DC, Wu Z, Tan ZX, Reddan M, Kahhale I, Mattek A, et al. Modeling emotion in complex stories: The stanford emotional narratives dataset. IEEE Trans Affect Comput 2021, 12: 579–594.
Davis MH. Measuring individual differences in empathy: Evidence for a multidimensional approach. J Pers Soc Psychol 1983, 44: 113–126.
Davis MH. Interpersonal Reactivity Index (IRI) [Database record]. APA PsycTests. 1980, https://doi.org/10.1037/t01093-000.
Zhang F, Dong Y, Wang K, Zhan Z, Xie L. Reliability and validity of the Chinese version of the interpersonal reactivity index-C. Chin J Clin Psychol 2010, 18(2): 155–157.
Neumann DL, Chan RCK, Wang Y, Boyle GJ. Cognitive and affective components of empathy and their relationship with personality dimensions in a Chinese sample. Asian J Soc Psychol 2016, 19: 244–253.
Wager TD, Nichols TE. Optimization of experimental design in fMRI: A general framework using a genetic algorithm. Neuroimage 2003, 18: 293–309.
Brainard DH. The psychophysics toolbox. Spatial Vis10: 433–436.
Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics 2016, 14: 339–351.
Su C, Zhou H, Gong L, Teng B, Geng F, Hu Y. Viewing personalized video clips recommended by TikTok activates default mode network and ventral tegmental area. Neuroimage 2021, 237: 118136.
Zhou H, Su C, Wu J, Li J, Lu X, Gong L, et al. A domain-general frontoparietal network interacts with domain-preferential intermediate pathways to support working memory task. Cereb Cortex 2023, 33: 2774–2787.
Chang CC, Lin CJ. LIBSVM. ACM Trans Intell Syst Technol 2011, 2: 1–27.
Poldrack RA, Kittur A, Kalar D, Miller E, Seppa C, Gil Y, et al. The cognitive atlas: Toward a knowledge foundation for cognitive neuroscience. Front Neuroinform 2011, 5: 17.
PubMed PubMed Central Google Scholar
Wei W, Deng L, Qiao C, Yin Y, Zhang Y, Li X, et al. Neural variability in three major psychiatric disorders. Mol Psychiatry 2023, 28: 5217–5227.
Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 2011, 8: 665–670.
CAS PubMed PubMed Central Google Scholar
Dockès J, Poldrack RA, Primet R, Gözükan H, Yarkoni T, Suchanek F, et al. NeuroQuery, comprehensive meta-analysis of human brain mapping. Elife 2020, 9: e53385.
PubMed PubMed Central Google Scholar
Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex 2018, 28: 3095–3114.
Haenlein M, Kaplan AM. A beginner’s guide to partial least squares analysis. Underst Stat 2004, 3: 283–297.
Beaton D, Dunlop J, Abdi H, Initiative ADN. Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data. Psychol Methods 2016, 21: 621–651.
Mehmood T, Sæbø S, Liland KH. Comparison of variable selection methods in partial least squares regression. J Chemom 2020, 34: e3226.
Mikels JA, Reuter-Lorenz PA. Affective working memory: An integrative psychological construct. Perspect Psychol Sci 2019, 14: 543–559.
Comments (0)