Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol. 2013;3:80.
CAS PubMed PubMed Central Google Scholar
Frey PA, Reed GH. The ubiquity of iron. ACS Chem Biol. 2012;7:1477–81.
Heard AW, Bekker A, Kovalick A, Tsikos H, Ireland T, Dauphas N. Oxygen production and rapid iron oxidation in stromatolites immediately predating the Great Oxidation Event. Earth Planet Sci Lett. 2022;582: 117416.
Khan A, Singh P, Srivastava A. Synthesis, nature and utility of universal iron chelator-siderophore: a review. Microbiol Res. 2018;212–213:103–11.
Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron absorption: factors, limitations, and improvement methods. ACS Omega. 2022;7:20441–56.
CAS PubMed PubMed Central Google Scholar
Philpott CC. Iron uptake in fungi: a system for every source. Biochim Biophys Acta. 2006;1763:636–45.
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim Biophys Acta Mol Cell Res. 2021;1868: 118885.
Franken AC, Lechner BE, Werner ER, Haas H, Lokman BC, Ram AF, et al. Genome mining and functional genomics for siderophore production in Aspergillus niger. Brief Funct Genomics. 2014;13:482–92.
Xie B, Wei X, Wan C, Zhao W, Song R, Xin S, et al. Exploring the biological pathways of siderophores and their multidisciplinary applications: a comprehensive review. Molecules. 2024;29:2318.
CAS PubMed PubMed Central Google Scholar
Happacher I, Aguiar M, Yap A, Decristoforo C, Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus: impact on biotic interactions and potential translational applications. Essays Biochem. 2023;67:829–42.
CAS PubMed PubMed Central Google Scholar
Pecoraro L, Wang X, Shah D, Song X, Kumar V, Shakoor A, et al. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J Fungi. 2021;8:21.
Liras P, Martín JF. Interconnected set of enzymes provide lysine biosynthetic intermediates and ornithine derivatives as key precursors for the biosynthesis of bioactive secondary metabolites. Antibiotics. 2023;12:159.
CAS PubMed PubMed Central Google Scholar
Coton E, Coton M, Hymery N, Mounier J, Jany J-L. Penicillium roqueforti: an overview of its genetics, physiology, metabolism and biotechnological applications. Fungal Biol Rev. 2020;34:59–73.
Dumas E, Feurtey A, Rodríguez de la Vega RC, Le Prieur S, Snirc A, Coton M, et al. Independent domestication events in the blue-cheese fungus Penicillium roqueforti. Mol Ecol. 2020;2020(29):2639–60.
Crequer E, Ropars J, Jany JL, Caron T, Coton M, Snirc A, et al. A new cheese population in Penicillium roqueforti and adaptation of the five populations to their ecological niche. Evol Appl. 2023;16:1438–57.
CAS PubMed PubMed Central Google Scholar
López-Díaz TM, Alegría Á, Rodríguez-Calleja JM, Combarros-Fuertes P, Fresno JM, Santos JA, et al. Blue cheeses: microbiology and its role in the sensory characteristics. Dairy. 2023;4:410–22.
Ong SA, Neilands JB. Siderophores in microbially processed cheese. J Agric Food Chem. 1979;27:990–5.
Monnet C, Back A, Irlinger F. Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron. Appl Environ Microbiol. 2012;78:3185–92.
CAS PubMed PubMed Central Google Scholar
Dutta S, Sarkar A, Dutta S. Optimization of siderophore production by Penicillium roqueforti (MCC-1717) – a dark septate root endophytic fungus isolated from the medicinal herb Celosia cristata L. Ann Agri Bio Res. 2020;25:198–204.
Emri T, Tóth V, Nagy CT, Nagy G, Pócsi I, Gyémánt G, et al. Towards high-siderophore-content foods: optimisation of coprogen production in submerged cultures of Penicillium nalgiovense. J Sci Food Agric. 2013;93:2221–8.
van der Nest MA, Chávez R, De Vos L, Duong TA, Gil-Durán C, Ferreira MA, et al. IMA genome - F14: draft genome sequences of Penicillium roqueforti, Fusarium sororula, Chrysoporthe puriensis, and Chalaropsis populi. IMA Fungus. 2021;12:5.
PubMed PubMed Central Google Scholar
Keller O, Kollmar M, Stanke M, Waack S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics. 2011;27:757–63.
Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, et al. Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat Commun. 2014;5:2876.
Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualization. Nucleic Acids Res. 2023;51:W46–50.
CAS PubMed PubMed Central Google Scholar
Marcano Y, Montanares M, Gil-Durán C, González K, Levicán G, Vaca I, et al. PrlaeA affects the production of roquefortine C, mycophenolic acid, and andrastin A in Penicillium roqueforti, but it has little impact on asexual development. J Fungi. 2023;9:954.
Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019;47:W171–4.
CAS PubMed PubMed Central Google Scholar
Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS ONE. 2015;10: e0133085.
PubMed PubMed Central Google Scholar
Chávez R, Roa A, Navarrete K, Trebotich J, Espinosa Y, Vaca I. Evaluation of properties of several cheese-ripening fungi for potential biotechnological applications. Mycoscience. 2010;51:84–7.
Louden BC, Haarmann D, Lynne AM. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ. 2011;12:51–3.
PubMed PubMed Central Google Scholar
Tamariz-Angeles C, Huamán GD, Palacios-Robles E, Olivera-Gonzales P, Castañeda-Barreto A. Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, Perú). Microbiol Res. 2021;250: 126811.
Yung L, Sirguey C, Azou-Barré A, Blaudez D. Natural fungal endophytes from Noccaea caerulescens mediate neutral to positive effects on plant biomass, mineral nutrition and Zn phytoextraction. Front Microbiol. 2021;12: 689367.
PubMed PubMed Central Google Scholar
Zhang J, Zhang P, Zeng G, Wu G, Qi L, Chen G, et al. Transcriptional differences guided discovery and genetic identification of coprogen and dimerumic acid siderophores in Metarhizium robertsii. Front Microbiol. 2021;12: 783609.
PubMed PubMed Central Google Scholar
Yang H, Wang Y, Zhang Z, Yan R, Zhu D. Whole-genome shotgun assembly and analysis of the genome of Shiraia sp strain Slf14, a novel endophytic fungus producing huperzine A and hypocrellin A. Genome Announc. 2014;2:e00011-14.
PubMed PubMed Central Google Scholar
Funabashi M, Baba S, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, et al. The biosynthesis of liposidomycin-like A-90289 antibiotics featuring a new type of sulfotransferase. ChemBioChem. 2010;11:184–90.
Williams K, Szwalbe AJ, Mulholland NP, Vincent JL, Bailey AM, Willis CL, et al. Heterologous production of fungal maleidrides reveals the cryptic cyclization involved in their biosynthesis. Angew Chem Int Ed Engl. 2016;55:6784–8.
CAS PubMed PubMed Central Google Scholar
Haas H. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol. 2003;62:316–30.
Hördt W, Römheld V, Winkelmann G. Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. Biometals. 2000;13:37–46.
Jalal MA, Love SK, van der Helm D. Siderophore mediated iron (III) uptake in Gliocladium virens. 1. Properties of cis-fusarinine, trans-fusarinine, dimerum acid, and their ferric complexes. J Inorg Biochem. 1986;28:417–30.
Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, et al. Fungal siderophores: structures, functions and applications. Mycol Res. 2002;106:1123–42.
Comments (0)