Molecular basis for the biosynthesis of the siderophore coprogen in the cheese-ripening fungus Penicillium roqueforti

Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol. 2013;3:80.

CAS  PubMed  PubMed Central  Google Scholar 

Frey PA, Reed GH. The ubiquity of iron. ACS Chem Biol. 2012;7:1477–81.

CAS  PubMed  Google Scholar 

Heard AW, Bekker A, Kovalick A, Tsikos H, Ireland T, Dauphas N. Oxygen production and rapid iron oxidation in stromatolites immediately predating the Great Oxidation Event. Earth Planet Sci Lett. 2022;582: 117416.

CAS  Google Scholar 

Khan A, Singh P, Srivastava A. Synthesis, nature and utility of universal iron chelator-siderophore: a review. Microbiol Res. 2018;212–213:103–11.

PubMed  Google Scholar 

Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron absorption: factors, limitations, and improvement methods. ACS Omega. 2022;7:20441–56.

CAS  PubMed  PubMed Central  Google Scholar 

Philpott CC. Iron uptake in fungi: a system for every source. Biochim Biophys Acta. 2006;1763:636–45.

CAS  PubMed  Google Scholar 

Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim Biophys Acta Mol Cell Res. 2021;1868: 118885.

CAS  PubMed  Google Scholar 

Franken AC, Lechner BE, Werner ER, Haas H, Lokman BC, Ram AF, et al. Genome mining and functional genomics for siderophore production in Aspergillus niger. Brief Funct Genomics. 2014;13:482–92.

CAS  PubMed  Google Scholar 

Xie B, Wei X, Wan C, Zhao W, Song R, Xin S, et al. Exploring the biological pathways of siderophores and their multidisciplinary applications: a comprehensive review. Molecules. 2024;29:2318.

CAS  PubMed  PubMed Central  Google Scholar 

Happacher I, Aguiar M, Yap A, Decristoforo C, Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus: impact on biotic interactions and potential translational applications. Essays Biochem. 2023;67:829–42.

CAS  PubMed  PubMed Central  Google Scholar 

Pecoraro L, Wang X, Shah D, Song X, Kumar V, Shakoor A, et al. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J Fungi. 2021;8:21.

Google Scholar 

Liras P, Martín JF. Interconnected set of enzymes provide lysine biosynthetic intermediates and ornithine derivatives as key precursors for the biosynthesis of bioactive secondary metabolites. Antibiotics. 2023;12:159.

CAS  PubMed  PubMed Central  Google Scholar 

Coton E, Coton M, Hymery N, Mounier J, Jany J-L. Penicillium roqueforti: an overview of its genetics, physiology, metabolism and biotechnological applications. Fungal Biol Rev. 2020;34:59–73.

Google Scholar 

Dumas E, Feurtey A, Rodríguez de la Vega RC, Le Prieur S, Snirc A, Coton M, et al. Independent domestication events in the blue-cheese fungus Penicillium roqueforti. Mol Ecol. 2020;2020(29):2639–60.

Google Scholar 

Crequer E, Ropars J, Jany JL, Caron T, Coton M, Snirc A, et al. A new cheese population in Penicillium roqueforti and adaptation of the five populations to their ecological niche. Evol Appl. 2023;16:1438–57.

CAS  PubMed  PubMed Central  Google Scholar 

López-Díaz TM, Alegría Á, Rodríguez-Calleja JM, Combarros-Fuertes P, Fresno JM, Santos JA, et al. Blue cheeses: microbiology and its role in the sensory characteristics. Dairy. 2023;4:410–22.

Google Scholar 

Ong SA, Neilands JB. Siderophores in microbially processed cheese. J Agric Food Chem. 1979;27:990–5.

CAS  PubMed  Google Scholar 

Monnet C, Back A, Irlinger F. Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron. Appl Environ Microbiol. 2012;78:3185–92.

CAS  PubMed  PubMed Central  Google Scholar 

Dutta S, Sarkar A, Dutta S. Optimization of siderophore production by Penicillium roqueforti (MCC-1717) – a dark septate root endophytic fungus isolated from the medicinal herb Celosia cristata L. Ann Agri Bio Res. 2020;25:198–204.

Google Scholar 

Emri T, Tóth V, Nagy CT, Nagy G, Pócsi I, Gyémánt G, et al. Towards high-siderophore-content foods: optimisation of coprogen production in submerged cultures of Penicillium nalgiovense. J Sci Food Agric. 2013;93:2221–8.

CAS  PubMed  Google Scholar 

van der Nest MA, Chávez R, De Vos L, Duong TA, Gil-Durán C, Ferreira MA, et al. IMA genome - F14: draft genome sequences of Penicillium roqueforti, Fusarium sororula, Chrysoporthe puriensis, and Chalaropsis populi. IMA Fungus. 2021;12:5.

PubMed  PubMed Central  Google Scholar 

Keller O, Kollmar M, Stanke M, Waack S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics. 2011;27:757–63.

CAS  PubMed  Google Scholar 

Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, et al. Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat Commun. 2014;5:2876.

PubMed  Google Scholar 

Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualization. Nucleic Acids Res. 2023;51:W46–50.

CAS  PubMed  PubMed Central  Google Scholar 

Marcano Y, Montanares M, Gil-Durán C, González K, Levicán G, Vaca I, et al. PrlaeA affects the production of roquefortine C, mycophenolic acid, and andrastin A in Penicillium roqueforti, but it has little impact on asexual development. J Fungi. 2023;9:954.

CAS  Google Scholar 

Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019;47:W171–4.

CAS  PubMed  PubMed Central  Google Scholar 

Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS ONE. 2015;10: e0133085.

PubMed  PubMed Central  Google Scholar 

Chávez R, Roa A, Navarrete K, Trebotich J, Espinosa Y, Vaca I. Evaluation of properties of several cheese-ripening fungi for potential biotechnological applications. Mycoscience. 2010;51:84–7.

Google Scholar 

Louden BC, Haarmann D, Lynne AM. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ. 2011;12:51–3.

PubMed  PubMed Central  Google Scholar 

Tamariz-Angeles C, Huamán GD, Palacios-Robles E, Olivera-Gonzales P, Castañeda-Barreto A. Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, Perú). Microbiol Res. 2021;250: 126811.

CAS  PubMed  Google Scholar 

Yung L, Sirguey C, Azou-Barré A, Blaudez D. Natural fungal endophytes from Noccaea caerulescens mediate neutral to positive effects on plant biomass, mineral nutrition and Zn phytoextraction. Front Microbiol. 2021;12: 689367.

PubMed  PubMed Central  Google Scholar 

Zhang J, Zhang P, Zeng G, Wu G, Qi L, Chen G, et al. Transcriptional differences guided discovery and genetic identification of coprogen and dimerumic acid siderophores in Metarhizium robertsii. Front Microbiol. 2021;12: 783609.

PubMed  PubMed Central  Google Scholar 

Yang H, Wang Y, Zhang Z, Yan R, Zhu D. Whole-genome shotgun assembly and analysis of the genome of Shiraia sp strain Slf14, a novel endophytic fungus producing huperzine A and hypocrellin A. Genome Announc. 2014;2:e00011-14.

PubMed  PubMed Central  Google Scholar 

Funabashi M, Baba S, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, et al. The biosynthesis of liposidomycin-like A-90289 antibiotics featuring a new type of sulfotransferase. ChemBioChem. 2010;11:184–90.

CAS  PubMed  Google Scholar 

Williams K, Szwalbe AJ, Mulholland NP, Vincent JL, Bailey AM, Willis CL, et al. Heterologous production of fungal maleidrides reveals the cryptic cyclization involved in their biosynthesis. Angew Chem Int Ed Engl. 2016;55:6784–8.

CAS  PubMed  PubMed Central  Google Scholar 

Haas H. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol. 2003;62:316–30.

CAS  PubMed  Google Scholar 

Hördt W, Römheld V, Winkelmann G. Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. Biometals. 2000;13:37–46.

PubMed  Google Scholar 

Jalal MA, Love SK, van der Helm D. Siderophore mediated iron (III) uptake in Gliocladium virens. 1. Properties of cis-fusarinine, trans-fusarinine, dimerum acid, and their ferric complexes. J Inorg Biochem. 1986;28:417–30.

CAS  PubMed  Google Scholar 

Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, et al. Fungal siderophores: structures, functions and applications. Mycol Res. 2002;106:1123–42.

Comments (0)

No login
gif