Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science. 2007;316:1033–6.
Article CAS PubMed Google Scholar
Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development. 2008;135:767–74.
Article CAS PubMed Google Scholar
Komiya R, Yokoi S, Shimamoto K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development. 2009;136:3443–50.
Article CAS PubMed Google Scholar
Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K. 14–3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature. 2011;476(7360):332–5. https://doi.org/10.1038/nature10272.
Article CAS PubMed Google Scholar
Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, Wang Y, Yu H. FTIP1 is an essential regulator required for florigen transport. PLoS Biol. 2012;10: e1001313.
Article CAS PubMed PubMed Central Google Scholar
Song S, Chen Y, Liu L, Wang Y, Bao S, Zhou X, Teo ZW, Mao C, Gan Y, Yu H. OsFTIP1-mediated regulation of florigen transport in rice is negatively regulated by the ubiquitin-like domain kinase OsUbDK?4. Plant Cell. 2017;29(3):491–507. https://doi.org/10.1105/tpc.16.00728.
Article CAS PubMed PubMed Central Google Scholar
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 2004;18(8):926–36. https://doi.org/10.1101/gad.1189604.
Article CAS PubMed PubMed Central Google Scholar
Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell. 2000;12:2473–84.
Article CAS PubMed PubMed Central Google Scholar
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet. 2008;40:761–7.
Article CAS PubMed Google Scholar
Shen C, Liu H, Guan Z, Yan J, Zheng T, Yan W, Wu C, Zhang Q, Yin P, Xing Y. Structural insight into DNA recognition by CCT/NF-YB/YC complexes in plant photoperiodic flowering. Plant Cell. 2020;32:3469–84.
Article CAS PubMed PubMed Central Google Scholar
Du A, Tian W, Wei M, Yan W, He H, Zhou D, Huang X, Li S, Ouyang X. The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Mol Plant. 2017;10:948–61.
Article CAS PubMed Google Scholar
Goretti D, Martignago D, Landini M, Brambilla V, Gómez-Ariza J, Gnesutta N, Galbiati F, Collani S, Takagi H, Terauchi R, Mantovani R, Fornara F. Transcriptional and posttranscriptional mechanisms limit heading date 1 (Hd1) function to adapt rice to high latitudes. PLoS Genet. 2017;13: e1006530.
Article PubMed PubMed Central Google Scholar
Roy S, Banerjee A, Mawkhlieng B, Misra AK, Pattanayak A, Harish GD, et al. Genetic diversity and population structure in aromatic and quality rice (Oryza sativa L.) landraces from North-Eastern India. PLoS ONE. 2015;10(6): e0129607.
Article PubMed PubMed Central Google Scholar
Das A, Kesari V, Rangan L. Aromatic Joha rice of Assam: a review. Agric Rev. 2010;31(1):1–10.
Bradbury LMT, Fitzgerald TL, Henry RJ, Jin Q, Waters DLE. The gene for fragrance in rice. Plant Biotechnol J. 2005;3:363–70.
Article CAS PubMed Google Scholar
Sashankar P, Chidambaranathan P, Anandan A, Sathyanarayana N. Downregulation of badh2 gene is responsible for aroma in Kon Joha rice (Oryza sativa L.) of Assam. Nucleus. 2024. https://doi.org/10.1007/s13237-024-00476-4.
Morita R, Kusaba M, Iida S, Yamaguchi H, Nishio T, Nishimura M. Molecular characterization of mutations induced by gamma irradiation in rice. Genes Genet Syst. 2009;84:361–70. https://doi.org/10.1266/ggs.84.361.
Article CAS PubMed Google Scholar
Viana VE, Pegoraro C, Busanello C, de Oliveira AC. Mutagenesis in Rice: the basis for breeding a new super plant. Front Plant Sci. 2019;10:1326. https://doi.org/10.3389/fpls.2019.01326.
Article PubMed PubMed Central Google Scholar
Riviello-Flores ML, Cadena-Iñiguez J, Ruiz-Posadas LDM, Arévalo-Galarza ML, Castillo-Juárez I, Soto Hernández M, Castillo-Martínez CR. Use of gamma radiation for the genetic improvement of underutilized plant varieties. Plants. 2022;11(9):1161. https://doi.org/10.3390/plants11091161.
Article CAS PubMed PubMed Central Google Scholar
Fu HW, Li YF, Shu QY. A revisit of mutation induction by gamma rays in rice (Oryza sativa L.): implications of microsatellite markers for quality control. Mol Breed. 2008;22:281–8. https://doi.org/10.1007/s11032-008-9173-7.
Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol. 2004;135(3):1198–205. https://doi.org/10.1104/pp.103.038463.
Article CAS PubMed PubMed Central Google Scholar
Lima JM, Nath M, Dokku P, Raman KV, Kulkarni KP, Vishwakarma C, Sahoo SP, Mohapatra UB, Amitha Mithra SV, Chinnusamy V, Robin S, Sarla N, Sheshashayee M, Singh K, Singh AK, Singh NK, Sharma RP, Mohapatra T. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AoB Plants. 2015;7: plv023. https://doi.org/10.1093/aobpla/plv023.
Article CAS PubMed PubMed Central Google Scholar
Shoba D, Raveendran M, Manonmani S, Utharasu S, Dhivyapriya D, Subhasini G, Ramchandar S, Valarmathi R, Grover N, Krishnan SG, Singh AK, Jayaswal P, Kale P, Ramkumar MK, Mithra SVA, Mohapatra T, Singh K, Singh NK, Sarla N, Sheshshayee MS, Kar MK, Robin S, Sharma RP. Development and genetic characterization of a novel herbicide (Imazethapyr) tolerant mutant in rice (Oryza sativa L.). Rice. 2017;10(1):10. https://doi.org/10.1186/s12284-017-0151-8.
Article CAS PubMed PubMed Central Google Scholar
Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA. 1991;88:9828–32.
Article CAS PubMed PubMed Central Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article CAS PubMed PubMed Central Google Scholar
Cingolani P, Platts A, le Wang, L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6(2):80–92. https://doi.org/10.4161/fly.19695.
Article CAS PubMed PubMed Central Google Scholar
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res. 1994;22(22):4673–80. https://doi.org/10.1093/nar/22.22.4673.
Comments (0)