Electronic-Nose Technology for Lung Cancer Detection: A Non-Invasive Diagnostic Revolution

Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening New England J Med 365(5):395–409 (2011). Available from: https://doi.org/10.1056/NEJMoa1102873

Zhao L, Qian J, Tian F, Liu R, Liu B, Zhang S et al (2021) A weighted discriminative extreme learning machine design for lung cancer detection by an electronic nose system. IEEE Trans Instrum Meas 70. Available from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107208143&doi=10.1109%2fTIM.2021.3084312&partnerID=40&md5=131c477606e0761d8d5f84a2ec4a4747

Noronha V, Budukh A, Chaturvedi P, Anne S, Punjabi A, Bhaskar M et al (2024) Uniqueness of lung cancer in Southeast Asia. The Lancet Regional Health Southeast Asia 27:100430. Available from http://www.thelancet.com/article/S2772368224000805/fulltext

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2025) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. Available from https://doi.org/10.3322/caac.21660

Hammerschmidt S, Wirtz H (2009) Lung cancer: current diagnosis and treatment. Dtsch Arztebl Int 106(49):809. Available from https://pmc.ncbi.nlm.nih.gov/articles/PMC2797332/

Gadgeel SM, Ramalingam SS, Kalemkerian GP (2025) Treatment of lung cancer. Radiologic Clin 50(5):961–974. Available from http://www.radiologic.theclinics.com/article/S0033838912001200/fulltext

Nooreldeen R, Bach H (2021) Current and future development in lung cancer diagnosis. Int J Mol Sci 22(16):8661. Available from https://pmc.ncbi.nlm.nih.gov/articles/PMC8395394/

Kremer R, Best LA, Savulescu D, Gavish M, Nagler RM (2010) Pleural fluid analysis of lung cancer vs benign inflammatory disease patients. Br J Cancer 102(7):1180–1184. Available from https://www.nature.com/articles/6605607

Guimarães MD, Marchiori E, Hochhegger B, Chojniak R, Gross JL (2014) CT-guided biopsy of lung lesions: defining the best needle option for a specific diagnosis. Clinics 69(5):335–340. Available from https://www.scielo.br/j/clin/a/WzbSG5R4HhsZsN3gmJBJpYR/?format=html&lang=en

Prabhakar B, Shende P, Augustine S (2018) Current trends and emerging diagnostic techniques for lung cancer. Biomed Pharmacother 1(106):1586–1599

Article  Google Scholar 

Wilson AD (2020) Noninvasive early disease diagnosis by electronic-nose and related VOC-detection devices. Biosensors 10(7):73. Available from https://www.mdpi.com/2079-6374/10/7/73/htm

Ahmad B, Ashfaq UA, Mahmood-ur-Rahman, Masoud MS, Nahid N, Tariq M et al (2023) E-nose-based technology for healthcare. In: Nanotechnology-based e-noses: fundamentals and emerging applications. Elsevier, pp 241–256

Rabehi A, Helal H, Zappa D, Comini E (2024) Advancements and prospects of electronic nose in various applications: a comprehensive review. Appl Sci 14(11):4506. Available from https://www.mdpi.com/2076-3417/14/11/4506/htm

Röck F, Barsan N, Weimar U (2025) Electronic nose: current status and future trends. Chem Rev 108(2):705–725. Available from https://pubs.acs.org/sharingguidelines

Doleman BJ, Lewis NS (2001) Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sens Actuators B Chem 72(1):41–50

Article  CAS  Google Scholar 

Li Y, Wang Z, Zhao T, Li H, Jiang J, Ye J (2024) Electronic nose for the detection and discrimination of volatile organic compounds: Application, challenges, and perspectives. TrAC, Trends Anal Chem 1(180):117958

Article  Google Scholar 

Pauling L, Robinson AB, Teranishi R, Cary P (2025) Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Nat Acad Sci 68(10):2374–2376. Available from https://doi.org/10.1073/pnas.68.10.2374

Preti G, Labows JN, Kostelc JG, Aldinger S, Daniele R (1988) Analysis of lung air from patients with bronchogenic carcinoma and controls using gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 432(C):1–11

O’Neill HJ, Gordon SM, O’Neill MH, Gibbons RD, Szidon JP (1988) A computerized classification technique for screening for the presence of breath biomarkers in lung cancer. Clin Chem 34(8):1613–1618. Available from https://doi.org/10.1093/clinchem/34.8.1613

Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, O’Neill HJ (1985) Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem 31(8):1278–1282. Available from https://doi.org/10.1093/clinchem/31.8.1278

Broza YY, Haick H (2013) Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 8(5):785–806. Available from https://doi.org/10.2217/nnm.13.64

Kort S, Tiggeloven MM, Brusse-Keizer M, Gerritsen JW, Schouwink JH, Citgez E et al (2018) Multi-centre prospective study on diagnosing subtypes of lung cancer by exhaled-breath analysis. Lung Cancer 1(125):223–229

Article  Google Scholar 

Tirzite M, Bukovskis M, Strazda G, Jurka N, Taivans I (2017) Detection of lung cancer in exhaled breath with an electronic nose using support vector machine analysis. J Breath Res 11(3):036009

Article  PubMed  Google Scholar 

Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B et al (2005) Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res 6(1):1–10. Available from https://doi.org/10.1186/1465-9921-6-71

Buszewski B, Ulanowska A, Kowalkowski T, Cieliski K (2012) Investigation of lung cancer biomarkers by hyphenated separation techniques and chemometrics. Clin Chem Lab Med 50(3):573–581

Article  CAS  Google Scholar 

Zuo W, Bai W, Gan X, Xu F, Wen G, Zhang W (2019) Detection of lung cancer by analysis of exhaled gas utilizing extractive electrospray ionization-mass spectroscopy. J Biomed Nanotechnol 15(4):633–646

Article  CAS  PubMed  Google Scholar 

Krilaviciute A, Heiss JA, Leja M, Kupcinskas J, Haick H, Brenner H. Detection of cancer through exhaled breath: a systematic review. Oncotarget 6(36):38643. Available from https://pmc.ncbi.nlm.nih.gov/articles/PMC4770726/

Ru LH, Lü W, Wang XQ, Zhang ZJ (2023) Early diagnosis of lung cancer based on breath specific VOCs screening and model assessment. J Instrumental Anal 42(3):275–282. Available from https://www.scopus.com/record/display.uri?eid=2-s2.0-85164836446&origin=scopusAI

Qin L, Wang Y, Wang F, Zhu Z, Luo R, Lv G et al (2024) Diagnosis and correlation analysis of lung cancer based on multi-parameter regression of respiratory volatile organic compounds. MCB Mole Cellular Biomech 21:105. Available from https://www.scopus.com/record/display.uri?eid=2-s2.0-85196027898&origin=scopusAI

Liu T, Zhu Y, Guo L, Dong H, Zhang M, Guo H et al (2023) Controlling fluidic behavior for ultra-sensitive volatile sensing. Appl Phys Rev 10(2):021408. Available from https://www.scopus.com/record/display.uri?eid=2-s2.0-85160630611&origin=scopusAI

Kalidoss R, Umapathy S, Rani Thirunavukkarasu U (2021) A breathalyzer for the assessment of chronic kidney disease patients’ breathprint: breath flow dynamic simulation on the measurement chamber and experimental investigation. Biomed Signal Process Control 70:103060. Available from https://www.scopus.com/record/display.uri?eid=2-s2.0-85112851985&origin=scopusAI

Mondal I, Zoabi A, Haick H (2025) Biodegradable, humidity-insensitive mask-integrated e-nose for sustainable and non-invasive continuous breath analysis. Adv Funct Mater. Available from https://www.scopus.com/record/display.uri?eid=2-s2.0-85218701940&origin=scopusAI

Freddi S, Sangaletti L (2022) Trends in the development of electronic noses based on carbon nanotubes chemiresistors for breathomics. Nanomaterials 12(17):2992. Available from https://www.scopus.com/record/display.uri?eid=2-s2.0-85137810920&origin=scopusAI

Petrescu V, Pettine J, Karabacak DM, Vandecasteele M, Calama MC, Van Hoof C (2012) Power-efficient readout circuit for miniaturized electronic nose. Dig Tech Pap IEEE Int Solid State Circuits Conf 55:318–319

Google Scholar 

Zohora SE, Khan AM, Hundewale N (2013) Chemical sensors employed in electronic noses: a review. Adv Intell Syst Comput 1(178):177–184

Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9(7):5099–5148. Available from https://www.mdpi.com/1424-8220/9/7/5099/htm

Chen H, Huo D, Zhang J (2022) Gas recognition in e-nose system: a review. IEEE Trans Biomed Circuits Syst 16(2):169–184

Article  PubMed  Google Scholar 

Wu N, Jia W, Ma J (2017) Application of electronic nose system modes based on genetic algorithm and particle swarm algorithm. In: 2017 ASABE annual international meeting. Spokane

Garcia-Ruiz MA, Santana-Mancilla PC, Gaytan-Lugo LS (2022) Olfactory interfaces: recent trends and challenges of e-noses in human-computer interaction †. Eng Proc 31(1):18

Google Scholar 

Chemical Sensor Technology (2025) Volume 4—Google Books. Available from https://books.google.co.in/books?hl=en&lr=&id=PjlCC1XPJdkC&oi=fnd&pg=PP1&dq=Chiba+A+(1992)+Chemical+sensor+technology.+In:+Yamauchi+S+(ed).+Kodansha,+Tokyo,+p+1&ots=8Cklg_Fpaw&sig=NMY36wb4f8VIBLtVOsb3GJogDZA&redir_esc=y#v=onepage&q&f=false

Patel H, Garrido Portilla V, Shneidman A V, Movilli J, Alvarenga J, Dupré C et al (2024) Design principles from natural olfaction for electronic noses. Adv Sci: 2412669. Available from https://doi.org/10.1002/advs.202412669

Dickinson TA, White J, Kauer JS, Walt DR (1996) A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382(6593):697–700. Available from https://www.nature.com/articles/382697a0

Di Natale C, Salimbeni D, Paolesse R, Macagnano A, D’Amico A (2000) Porphyrins-based opto-electronic nose for volatile compounds detection. Sens Actuators B Chem 65(1–3):220–226

Article  Google Scholar 

Écija-Arenas Á, Kirchner EM, Hirsch T, Fernández-Romero JM (2021) Development of an aptamer-based SPR-biosensor for the determination of kanamycin residues in foods. Anal Chim Acta 18:1169

Google Scholar 

Grantzioti E, Pissadakis S, Konstantaki M (2025) Optical fiber volatile organic compound vapor sensor with ppb detectivity for breath biomonitoring. IEEE Sens J

Wang Z, Li Y, Gao Y, Mu Z, Zong S, Han XF et al (2025) Metal-organic framework modified open-cavity optical fiber Fabry-Pérot interferometer for volatile organic compound detection. Talanta 1(281):126901

Article  Google Scholar 

Mohamed R, Salleh MM, Yahaya M (2012) Development of a piezoelectric chemical sensor using metalloporphyrins compounds as a coating material. In: Proceedings—2012 IEEE 8th international colloquium on signal processing and its applications, CSPA 2012, pp 41–43

Tiwary A, Kumar J, Behera B (2023) Analysis of CNT-based SAW sensor for the detection of volatile organic compounds. Physica B Condens Matter 15(669):415279

Article  Google Scholar 

James D, Scott SM, Ali Z, O’Hare WT (2005) Chemical sensors for electronic nose systems. Microchimica Acta 149(1–2):1–17. Available from https://doi.org/10.1007/s00604-004-0291-6

Qu X, Hu Y, Xu C, Li Y, Zhang L, QHCE et al (2024) Optical sensors of volatile organic compounds for non-invasive diagnosis of diseases. In: Qu X, Hu Y, Xu C, Li Y, Zhang L, Huang Q, Moshirian-Farahi SS, Zhang J, Xu X, Liao M, Fu Y (eds) Chem Eng J. Available from https://www.sciencedirect.com/science/article/pii/S1385894724012890

Rocco G, Pennazza G, Tan KS, Vanstraelen S, Santonico M, Corba RJ et al (2024) A real-world assessment of stage I lung cancer through electronic nose technology. J Thoracic Oncol 19(9):1272–1283. Available from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194952254&doi=10.1016%2fj.jtho.2024.05.006&partnerID=40&md5=ff75593528787d739a396102818dddf5

Binson VA, Thomas S, Philip PC, Thomas A, Pillai P, Nithin John P (2023) Detection of early lung cancer cases in patients with COPD using eNose technology: a promising non-invasive approach. In: RASSE 2023—IEEE international conference on recent advances in systems science and engineering, proceedings

Kononov A, Korotetsky B, Jahatspanian I, Gubal A, Vasiliev A, Arsenjev A et al (2020) Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer. J Breath Res 14(1). Available from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073764300&doi=10.1088%2f1752-7163%2fab433d&partnerID=40&md5=f802117d2a2e9d35424cb824b745f95c

Mohamed EI, Saleem IA, Darwish AA, Mshaly MS, Mahmoud MS, Turkey MS et al (2024) Machine learning-based electronic nose for universal mapping of blood odors and diagnosis of cancer. Chem Eng Trans 112:121–126. Available from https://www.scopus.com/record/display.uri?eid=2-s2.0-85208124986&origin=scopusAI

Martin JDM, Romain AC (2022) Building a sensor benchmark for e-nose based lung cancer detection: methodological considerations. Chemosensors 10(11):444. Available from https://www.scopus.com/record/display.uri?eid=2-s2.0-85141754320&origin=scopusAI

Taufiqurrohman M, Aulanni’am, Yuyun Yueniwati PW, Ciptadi G (2023) Development of surface acoustic wave sensor electronic nose for the identification of volatile compound organic using artificial neural network. Int J Eng Appl 11(5):318–326

Casique AL, Aguirre SM, Iniesta SA, Pérez GB, Mixcóatl JC (2014) Gas sensors based on quartz crystal microbalance for classification of volatile organic compounds. In: 2014 IEEE 9th IberoAmerican congress on sensors, IBERSENSOR 2014—conference proceedings

Krško O, Plecenik T, Roch T, Grančič B, Satrapinskyy L, Truchlý M et al (2017) Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sens Actuators B Chem 1(240):1058–1065

Article  Google Scholar 

Karki B, Trabelsi Y, Sarkar P, Pal A, Uniyal A (2025) Tuning sensitivity of surface plasmon resonance gas sensor based on multilayer black phosphorous. Mod Phys Lett B 39(1):2450364

Article  CAS  Google Scholar 

Gudiño-Ochoa A, García-Rodríguez JA, Cuevas-Chávez JI, Ochoa-Ornelas R, Navarrete-Guzmán A, Vidrios-Serrano C et al (2024) Enhanced diabetes detection and blood glucose prediction using TinyML-integrated e-nose and breath analysis: a novel approach combining synthetic and real-world data. Bioengineering 11(11):1065

Article  PubMed  PubMed Central  Google Scholar 

Goikhman BV, Fedorov FS, Simonenko NP, Simonenko TL, Fisenko NA, Dubinina TS et al (2022) Quantum of selectivity testing: detection of isomers and close homologs using an AZO based e-nose without a prior training. J Mater Chem A. Available from https://pubs.rsc.org/en/content/articlehtml/2022/ta/d1ta10589b

Lee B, Lee J, Lee JO, Hwang Y, Bahn HK, Park I et al (2024) Breath analysis system with convolutional neural network (CNN) for early detection of lung cancer. Sens Actuators B Chem 15(409):135578

Article  Google Scholar 

Binson VA, Akbar R, Thankachan N, Thomas S (2022) Design and construction of a portable e-nose system for human exhaled breath VOC analysis. Mater Today Proc: 422–427. Available from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128669227&doi=10.1016%2fj.matpr.2022.02.388&partnerID=40&md5=2dc5f2a3e5f7b82e911d40413f19a40a

Konduru T, Rains GC, Li C (2015) A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization. Sensors (Switzerland) 15(1):1252–1273

Article  CAS  Google Scholar 

Samiyan NS, Mohd AM (2017) Characterization of sensing chamber design for E-nose applications. J Telecommun Electron Comput Eng 9(3):123–127

Google Scholar 

Sanmartí M, Iavicoli P (2012) Biosensors for diagnostic based on olfactory receptors. Nanomed Diagnos. Available from https://doi.org/10.1201/b11929-9&type=chapterpdf

Cevoli C, Grigoletto I, Casadei E, Panni F, Valli E, Barbieri S et al (2025) Data fusion of headspace gas-chromatography ion mobility spectrometry and flash gas-chromatography electronic nose volatile fingerprints to estimate the commercial categories of virgin olive oils. J Food Eng 1(391):112449

Article  Google Scholar 

Wei G, Zhang W, He A, Yu D, Jiao S, Gao C (2025) Design and implementation of an edge embedded intelligent electronic nose system based on 1D convolutional neural network and online passive-aggressive algorithms (1DCNN-OPA). Sens Actuators A Phys 1(381):116052

Article 

Comments (0)

No login
gif