A Novel Prednisolone-Loaded Layer-by-Layer Nanoparticles (LBL-NPs) for Rheumatoid Arthritis: Optimization and Therapeutic Evaluation

Guo Q, et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15. https://doi.org/10.1038/s41413-018-0016-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edis Z, et al. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomed. 2021;16:1313–30. https://doi.org/10.2147/IJN.S292372.

Article  Google Scholar 

Men W, et al. Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with enhanced therapeutic efficacy in vivo. Drug Deliv. 2020;27(1):180–90. https://doi.org/10.1080/10717544.2020.1729868.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mateos-Maroto A, et al. Polyelectrolyte multilayered capsules as biomedical tools. Polymers (Basel). 2022;14(3):479. https://doi.org/10.3390/polym14030479.

Article  CAS  PubMed  Google Scholar 

Ruseska I, et al. Use of protamine in nanopharmaceuticals—A review. Nanomaterials (Basel). 2021;11(6):1508. https://doi.org/10.3390/nano11061508.

Article  CAS  PubMed  Google Scholar 

Oliveira AM, et al. Graphene oxide thin films with drug delivery function. Nanomaterials (Basel). 2022;12(7):1149. https://doi.org/10.3390/nano12071149.

Article  CAS  PubMed  Google Scholar 

Puckett Y et al. (2023) Prednisone. StatPearls Publishing

Tiwari G, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2–11. https://doi.org/10.4103/2230-973X.96920.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu P, et al. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4):1372. https://doi.org/10.3390/molecules27041372.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar CS, et al. Ferulic acid-loaded collagen hydrolysate and polycaprolactone nanofibres for tissue engineering applications. IET Nanobiotechnol. 2020;14(3):202–9. https://doi.org/10.1049/iet-nbt.2019.0244.

Article  PubMed  PubMed Central  Google Scholar 

Chen W, et al. Synthesis, characterization, and anticancer activity of protamine sulfate stabilized selenium nanoparticles. Food Res Int. 2023;164: 112435. https://doi.org/10.1016/j.foodres.2022.112435.

Article  CAS  PubMed  Google Scholar 

Santos AC, et al. Sonication-assisted layer-by-layer assembly for low solubility drug nanoformulation. ACS Appl Mater Interfaces. 2015;7(22):11972–83. https://doi.org/10.1021/acsami.5b02002.

Article  CAS  PubMed  Google Scholar 

Chen X, et al. Preparation and properties of natural polysaccharide-based drug delivery nanoparticles. Polymers (Basel). 2023;15(11):2510. https://doi.org/10.3390/polym15112510.

Article  CAS  PubMed  Google Scholar 

Santos AC, et al. Sonication-assisted layer-by-layer assembly for low solubility drug nanoformulation. ACS Appl Mater Interfaces. 2015;7(21):11972–83. https://doi.org/10.1021/acsami.5b01671.

Article  CAS  PubMed  Google Scholar 

Sivadasan D, et al. Application of 32 factorial design for loratadine-loaded nanosponge in topical gel formulation: comprehensive in-vitro and ex vivo evaluations. Sci Rep. 2024;14:6361. https://doi.org/10.1038/s41598-024-55953-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Serwi RH, et al. Targeted drug administration onto cancer cells using hyaluronic acid-quercetin-conjugated silver nanoparticles. Molecules. 2023;28(10):4146. https://doi.org/10.3390/molecules28104146.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohamed JMM, et al. In vitro physical characterizations and docking studies on carvedilol nanocrystals. Crystals. 2022;12(7):988. https://doi.org/10.3390/cryst12070988.

Article  CAS  Google Scholar 

Mohamed JMM, et al. Superfast synthesis of stabilized silver nanoparticles using aqueous Allium sativum (garlic) extract and isoniazid hydrazide conjugates: molecular docking and in-vitro characterizations. Molecules. 2021;27(1):110. https://doi.org/10.3390/molecules27010110.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kishore N, et al. Lipid carriers for delivery of celecoxib: in vitro, in vivo assessment of nanomedicine in rheumatoid arthritis. Eur J Lipid Sci Technol. 2016;118(7):949–58. https://doi.org/10.1002/ejlt.201500516.

Article  CAS  Google Scholar 

Mohamed JMM, et al. Polymeric ethosomal gel loaded with nimodipine: optimisation, pharmacokinetic and histopathological analysis. Saudi Pharm J. 2022;30(12):1603–11. https://doi.org/10.1016/j.jsps.2022.09.008.

Article  Google Scholar 

Mohamed JMM, et al. Optimization and characterization of quercetin-loaded solid lipid nanoparticles for biomedical application in colorectal cancer. Cancer Nanotechnology. 2024;15(16):1–17. https://doi.org/10.1186/s12645-024-00249-3.

Article  CAS  Google Scholar 

Mohamed JMM, et al. Studies on preparation and evaluation of soluble 1:1 stoichiometric curcumin complex for colorectal cancer treatment. Trends Sci. 2021;18:1403. https://doi.org/10.48048/tis.2021.1403.

Newbould B. Chemotherapy of arthritis induced in rats by mycobacterial adjuvant. Br J Pharmacol Chemother. 1963;21:127–36. https://doi.org/10.1111/j.1476-5381.1963.tb01323.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, et al. Radiography of soft tissue of the foot and ankle with diffraction-enhanced imaging. J Anat. 2003;202(5):463–70. https://doi.org/10.1046/j.1469-7580.2003.00181.x.

Article  PubMed  PubMed Central  Google Scholar 

Ahn JH, et al. Optimization of microencapsulation of seed oil by response surface methodology. Food Chem. 2008;107(1):98–105. https://doi.org/10.1016/j.foodchem.2007.08.028.

Article  CAS  Google Scholar 

Danaei M, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. https://doi.org/10.3390/pharmaceutics10020057.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borodina T, et al. Polyelectrolyte microcapsules as the systems for delivery of biologically active substances. Biochem (Moscow) Suppl Ser B Biomed Chem. 2008;2(2):88–93. https://doi.org/10.1134/S1990750808020021.

Article  Google Scholar 

Hayden SC, et al. Aggregation and interaction of cationic nanoparticles on bacterial surfaces. J Am Chem Soc. 2012;134(15):6920–3. https://doi.org/10.1021/ja300066m.

Article  CAS  PubMed  Google Scholar 

Gonçalves RA, et al. Green synthesis and applications of ZnO and TiO₂ nanostructures. Molecules. 2021;26(8):2236. https://doi.org/10.3390/molecules26082236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munir I, Yesiloz G. Novel size-tunable and straightforward ultra-small nanoparticle synthesis in a varying concentration range of glycerol as a green reducing solvent. ACS Omega. 2023;8(50):28456–66. https://doi.org/10.1021/acsomega.3c04331.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang X, et al. Is surface roughness a “scapegoat” or a primary factor when defining particle-substrate interactions? Langmuir. 2009;26(4):2528–37. https://doi.org/10.1021/la9028113.

Comments (0)

No login
gif