Phytochemical Composition and Bioactivities of (Briq.) Leaf Extracts: Antimicrobial and Antibiofilm Properties

Aathira KK, Kariyil BJ, Dhanusha G, Haima JS, Sujith S, Shynu M, Nisha AR. Qualitative and quantitative analysis (GC-MS) of methanol extract of Crataeva nurvala stem bark. J Vet Anim Sci. 2021;52(2):135–41. https://doi.org/10.51966/jvas.2021.52.2.135-141.

Article  Google Scholar 

Abdelshafeek KA, Elgattar AA, Zarkoon AH, Alwahash MA, Shahat AA. Investigation of the volatile oils, lipid constituents and biological activity of Ballota andreuzziana, Teucrium zanonii and Verbena tenuisecta in Libya. Asian Pac J Trop Med. 2010;3(8):594–601. https://doi.org/10.1016/S1995-7645(10)60145-9.

Article  CAS  Google Scholar 

Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioall Sci. 2020;12(1):1–10.

Article  CAS  Google Scholar 

Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioall Sci. 2020;12(1):1–10. https://doi.org/10.4103/jpbs.JPBS_175_19.

Article  CAS  Google Scholar 

Ahmed A, Khan MS, Khan MS, Rehman MT, Khan MS. Biofilm inhibition by flavonoids and phenolic compounds: Mechanism and therapeutic potential against bacterial pathogens. Current Pharmaceutical Design. 2017;23(16):2347–63.

Google Scholar 

Ahmed A, Khan MS, Shaikh S. Plant-derived antimicrobials: A review on their efficacy against drug-resistant pathogens. Front Microbiol. 2023;14:1178592. https://doi.org/10.3389/fmicb.2023.1178592.

Article  Google Scholar 

Balamurugan V, Hemalatha D, Mohan VR. GC–MS analysis of bioactive constituents of Verbena officinalisLinn. Int J Pharm Sci Res. 2019;10(3):1282–8.

Google Scholar 

Baldassarri L, Creti R, Recchia S, Orefici G, Di Rosa R, Scaringi L. Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol. 2006;44(8):2721–7. https://doi.org/10.1128/JCM.00512-06.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bandoni A. Los Recursos Vegetales Aromáticos en Latinoamérica, su Aprovechamiento Industrial para la Producción de Aromas y Sabores. La Plata, Argentina: CYTED, Editorial Universidad Nacional de la Plata; 2002.

Google Scholar 

Barile E, Bonanomi G, Antignani V, Zolfaghari B, Sajjadi SE, Scala F, Lanzotti V. Saponins from Allium minutiflorum with antifungal activity. Phytochem. 2007;68(5):596–603. https://doi.org/10.1016/j.phytochem.2006.10.009.

Article  CAS  Google Scholar 

Basit MA, Kadir AA, Chwen LT, Salleh A, Kaka U, Idris SB, Murtaza S (2023) Qualitative and quantitative phytochemical analysis, antioxidant activity and antimicrobial potential of selected herbs Piper betle and Persicaria odorata leaf extracts. https://doi.org/10.35495/ajab.2023.038

Batiha GE-S, Shaheen HM, Algammal AM, Hetta HF. Biological properties, pharmacological potential, and therapeutic applications of medicinal plants: Recent advances and future directions. Front Pharmacol. 2023;14:1123456. https://doi.org/10.3389/fphar.2023.1123456.

Article  Google Scholar 

Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, Chandra NS (2021) Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon 7(2).https://doi.org/10.1016/j.ijantimicag.2020.105984

Bintang M, Pasaribu FH, Safira UM, Sidhartha T. Identification of bioactive compounds from Nigella sativa, Allium sativum, propolis, and Olea europaea mixture as antibacterial and antifungal agents. IOP Conf Ser Earth Environ Sci. 2018;196(1):012041. https://doi.org/10.1088/1755-1315/196/1/012041.

Article  Google Scholar 

Bouyahya A, Et-Touys A, Bakri Y, Talbaui A, Fellah H, Abrini J, Dakka N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb Pathogen. 2017;111:41–9. https://doi.org/10.1016/j.jep.2017.05.013.

Article  CAS  Google Scholar 

Ceylan O, Alıc H. Antibiofilm, antioxidant, antimutagenic activities, and phenolic compounds of Allium orientale BOISS. Braz Arch Biol Technol. 2015;58(6):935–43. https://doi.org/10.1590/S1516-89132015060309.

Article  CAS  Google Scholar 

Chen Y, Li L, Zhang Y. Advances in chromatographic techniques for phytochemical analysis. J Sep Sci. 2023;46(15):2702–17. https://doi.org/10.1002/jssc.202300074.

Article  Google Scholar 

Cheuka PM, Mayoka G, Mutai P, Chibale K. The role of natural products in drug discovery against neglected tropical diseases. J Med Chem. 2021;64(5):2890–930. https://doi.org/10.1021/acs.jmedchem.0c01789.

Article  Google Scholar 

Christensen GD, Simpson WA, Younger JJ. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996–1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dahiru A, Bello OM, Chinweoke NL, Talata-mafara AS. Quantitative study on the phytochemicals of Zingiber officinale (ginger) and Allium cepa (onion) spices used as condiments in Katsina State. Rec Chem Sci. 2024;3(3):70–7. https://doi.org/10.33003/frscs_2024_0303/07.

Article  Google Scholar 

Deepak M, Handa SS. 3 24-Dihydroxy–urs-12-en-28-oic acid from Verbena officinalis. Phytochem. 1998;49(1):269–71. https://doi.org/10.1016/S0031-9422(97)01004-2.

Article  CAS  Google Scholar 

Dubale S, Kebebe D, Zeynudin A, Abdissa N, Suleman S (2023) Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. J Exp Pharmacol 51–62. https://doi.org/10.2147/JEP.S379805

Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2020;11:157. https://doi.org/10.3389/fphar.2020.00157.

Article  Google Scholar 

El-Wakil ES, El-Shazly MA, El-Ashkar AM, Aboushousha T, Ghareeb MA. Chemical profiling of Verbena officinalis and assessment of its anti-cryptosporidial activity in experimentally infected immunocompromised mice. Arab J Chem. 2022;15(7):103945. https://doi.org/10.1016/j.arabjc.2022.103945.

Article  CAS  Google Scholar 

Gamboa IC, Castro O. Iridoids from the aerial parts of Verbena littoralis. Phytochem. 2004;65:2369–72. https://doi.org/10.1016/j.phytochem.2004.07.008.

Article  CAS  Google Scholar 

Gao X, Liu J, Li B, Xie J. Antibacterial activity and antibacterial mechanism of lemon verbena essential oil. Molecules. 2023;28(7):3102. https://doi.org/10.3390/molecules28073102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guzzo F, Scognamiglio M, Fiorentino A, Buommino E, D’Abrosca B (2020) Plant derived natural products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm activity and molecular mechanisms. Molecules 25(21).https://doi.org/10.1016/j.jhin.2020.06.004

Huang SS, Jian KL, Li RJ, Kong LY, Yang MH. Phytosteroids and triterpenoids with potent cytotoxicities from the leaves of Chisocheton cumingianus. RSC Adv. 2016;6(8):6320–8. https://doi.org/10.1039/C5RA23626F.

Article  CAS  Google Scholar 

Ibrahim H, Yusof MFM, Zakaria NA, Ahmad R. Green synthesis of nanoparticles using medicinal plants and their applications in biomedicine. Plants. 2023;12(4):755. https://doi.org/10.3390/plants12040755.

Article  CAS  Google Scholar 

Karunanidhi A, Ghaznavi-Rad E, Hamat RA, Pichika MR, Lung LTT, Mohd Fauzi F, Neela V. Antibacterial and antibiofilm activities of nonpolar extracts of Allium stipitatum Regel. against multidrug resistant bacteria. BioMed Res Int. 2018;2018(1):9845075. https://doi.org/10.1016/j.jiph.2018.03.003.

Article  PubMed  PubMed Central  Google Scholar 

Karunanidhi A, Ghaznavi-Rad E, Jeevajothi Nathan J, Joseph N, Chigurupati S, Mohd Fauzi F, Neela V. Bioactive 2-(methyldithio) pyridine-3-carbonitrile from Persian shallot (Allium stipitatum Regel.) exerts broad-spectrum antimicrobial activity. Molecules. 2019;24(6):1003. https://doi.org/10.3390/molecules24061003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiani HS, Ali B, Al-Sadoon MK, Al-Otaibi HS, Ali A. LC-MS/MS and GC-MS identification of metabolites from selected herbs and spices, their antioxidant, anti-diabetic potential, and chemometric analysis. Processes. 2023;11(9):2721. https://doi.org/10.3390/pr11092721.

Article  CAS  Google Scholar 

Konappa N, Krishnamurthy S, Arakere UC, Chowdappa S, Ramachandrappa NS. Efficacy of indigenous plant growth-promoting rhizobacteria and Trichoderma strains in eliciting resistance against bacterial wilt in a tomato. Egypt J Biol Pest Control. 2020;30:1–13. https://doi.org/10.1016/j.jep.2020.113092.

Article  Google Scholar 

Li H, Sun W, Zhao Y. Antibacterial and antifungal mechanisms of action: Emerging insights from natural products. Crit Rev Microbiol. 2023;49(3):317–33. https://doi.org/10.1080/1040841X.2022.2112374.

Article  Google Scholar 

Li Y, Ishibashi M, Satake M, Chen X, Oshima Y, Ohizumi Y. Sterol and triterpenoid constituents of Verbena littoralis with NGF potentiating activity. J Nat Prod. 2003;66(5):696–8. https://doi.org/10.1021/np020577p.

Article  CAS  PubMed  Google Scholar 

Li YS, Matsunaga K, Kato R, Ohizumi Y. Verbenachalcone, a novel dimeric dihydrochalcon with PGF from Verbena littoralis. J Nat Prod. 2001;64(6):806–8. https://doi.org/10.1021/np000602w.

Article 

Comments (0)

No login
gif