Formulation of Mixed Micelles of Various Model Drug Ionic Complexes in an Optimized Micellar Base Composed of Surfactants and Cosolvent Mixture: In Vitro Analysis of Drug Delivery Efficiency

Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014;5:77.

PubMed  PubMed Central  Google Scholar 

Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:340315.

PubMed  PubMed Central  Google Scholar 

Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

CAS  PubMed  Google Scholar 

Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst. 2003;20(5):357–403.

CAS  PubMed  Google Scholar 

Li Y, et al. Preparation and evaluation of copolymeric micelles with high paclitaxel contents and sustained drug release. Colloids Surf, A. 2013;429:12–8.

CAS  Google Scholar 

Cong Z, et al. A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. Int J Biol Macromol. 2018;107(Pt A):855–64.

CAS  PubMed  Google Scholar 

Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201–30.

CAS  PubMed  Google Scholar 

Berthelsen, R., et al., Kolliphor Surfactants Affect Solubilization and Bioavailability of Fenofibrate. Studies of in Vitro Digestion and Absorption in Rats. Molecular pharmaceutics, 2015. 12.

Liang H, et al. Phospholipid-Tween 80 mixed micelles as an intravenous delivery carrier for paclitaxel. Drug Dev Ind Pharm. 2011;37:597–605.

CAS  PubMed  Google Scholar 

Prajapati HN, Dalrymple DM, Serajuddin AT. A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development. Pharm Res. 2012;29(1):285–305.

CAS  PubMed  Google Scholar 

Jain, S., et al., Cyclosporine A Loaded Self-nanoemulsifying Drug Delivery System (SNEDDS): Implication of Functional Excipient Based Co-encapsulation Strategy on Oral Bioavailability and Nephrotoxicity. RSC Adv., 2015. 5.

Soltani S, et al. Design of eudragit RL nanoparticles by nanoemulsion method as carriers for ophthalmic drug delivery of ketotifen fumarate. Iran J Basic Med Sci. 2016;19(5):550–60.

PubMed  PubMed Central  Google Scholar 

Adibkia K, et al. Naproxen–eudragit® RS100 nanoparticles: Preparation and physicochemical characterization. Colloids Surf, B. 2011;83(1):155–9.

CAS  Google Scholar 

Malkawi A, et al. Self-Emulsifying Drug Delivery Systems: Hydrophobic Drug Polymer Complexes Provide a Sustained Release in Vitro. Mol Pharm. 2020;17(10):3709–19.

CAS  PubMed  PubMed Central  Google Scholar 

Malkawi AS, et al. Development of Fluorescently Labeled Self-Emulsifying Drug Delivery Systems (SEDDS) for Prolonged Stability, In Vitro Sustained Release, and Cellular Uptake. Pharm Nanotechnol. 2022;10(2):146–61.

CAS  PubMed  Google Scholar 

Malkawi A, Alrabadi N, Kennedy RA. Dual-Acting Zeta-Potential-Changing Micelles for Optimal Mucus Diffusion and Enhanced Cellular Uptake after Oral Delivery. Pharmaceutics. 2021;13(7):974.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang W, et al. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. Int J Nanomedicine. 2014;9:4305–15.

PubMed  PubMed Central  Google Scholar 

Malkawi A, et al. Development of Self-Emulsifying Drug Delivery Systems (SEDDSs) Displaying Enhanced Permeation of the Intestinal Mucus Following Sustained Release of Prototype Thiol-Based Mucolytic Agent Load. Molecules. 2022;27(14):4611.

CAS  PubMed  PubMed Central  Google Scholar 

Rychen G, et al. Safety and efficacy of ponceau 4R for cats, dogs and ornamental fish. Efsa j. 2018;16(3):e05222.

PubMed  PubMed Central  Google Scholar 

Simmons J, Lee Y, Achenie L. A passive diffusion model of fluorescein derivatives in an in vitro human brain microvascular endothelial cell (HBMEC) monolayer. Journal of Measurements in Engineering. 2018;6:127–36.

Google Scholar 

Information, N.C.f.B., PubChem Compound Summary for CID 17466, C.I. Acid Red 18. 2025.

Information, N.C.f.B., PubChem Compound Summary for CID 44093, Captopril. 2025.

Information, N.C.f.B., PubChem Compound Summary for CID 16850, Fluorescein. 2025.

Logoyda L, et al. Method development for the quantitative determination of captopril from Caco-2 cell monolayers by using LC-MS/MS. Pharmacia. 2021;68:61–7.

CAS  Google Scholar 

Nitsch A, et al. Determination of In Vitro Membrane Permeability by Analysis of Intracellular and Extracellular Fluorescein Signals in Renal Cells. In Vivo. 2019;33(6):1767–71.

CAS  PubMed  PubMed Central  Google Scholar 

Thompson WE, et al. Identification of primary, secondary, and tertiary pharmaceutical amines by the infrared spectra of their salts. J Pharm Sci. 1965;54(12):1819–21.

CAS  Google Scholar 

Costa, P. and J.M. Sousa Lobo, Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 2001. 13(2): p. 123–133.

Higuchi, T., Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 1963. 52(12): p. 1145–1149.

Hudson RA, Scott RM, Vinogradov SN. Hydrogen-bonded complex-ion-pair equilibriums in 3,4-dinitrophenol-amine-aprotic solvent systems. J Phys Chem. 1972;76(14):1989–93.

CAS  Google Scholar 

Crooks JE, Robinson BH. Hydrogen-bonded and ion-pair complexes in aprotic solvents. Faraday Symposia of the Chemical Society. 1975;10:29–40.

CAS  Google Scholar 

Jones JW, Gibson HW. Ion Pairing and Host−Guest Complexation in Low Dielectric Constant Solvents. J Am Chem Soc. 2003;125(23):7001–4.

CAS  PubMed  Google Scholar 

Van Even V, Haulait-Pirson MC. Influence of the dielectric constant on ion-pair and ion-ligand complex formation. J Solution Chem. 1977;6(11):757–70.

Google Scholar 

Kunin R, Winger AG. Liquid Ion-Exchange Technology. Angew Chem, Int Ed Engl. 1962;1(3):149–55.

Google Scholar 

Hauptstein S, Prüfert F, Bernkop-Schnürch A. Self-nanoemulsifying drug delivery systems as novel approach for pDNA drug delivery. Int J Pharm. 2015;487(1–2):25–31.

CAS  PubMed  Google Scholar 

Astruc-Diaz, F., Cannabinoids delivery systems based on supramolecular inclusion complexes and polymeric nanocapsules for treatment of neuropathic pain. 2012.

Chamieh J, et al. Peptide release from SEDDS containing hydrophobic ion pair therapeutic peptides measured by Taylor dispersion analysis. Int J Pharm. 2019;559:228–34.

CAS  PubMed  Google Scholar 

Panchompoo J, et al. One-step synthesis of fluorescein modified nano-carbon for Pd(II) detection via fluorescence quenching. Analyst. 2012;137(9):2054–62.

CAS  PubMed  Google Scholar 

Sheng L, et al. Polystyrenes containing flexible alkylsulfonated side chains as a proton exchange membrane for fuel cell application. Polym Chem. 2012;3:3289–95.

CAS  Google Scholar 

Jin, J.-Y., et al., White light emission from a blue LED, combined with a sodium salt of fluorescein dye. Vol. 157. 2007. 138–141.

Liang H, et al. Size-Shifting Micelle Nanoclusters Based on a Cross-Linked and pH-Sensitive Framework for Enhanced Tumor Targeting and Deep Penetration Features. ACS Appl Mater Interfaces. 2016;8(16):10136–46.

CAS  PubMed  Google Scholar 

Wang J, et al. Poly(Ethylene Glycol)-Polylactide Micelles for Cancer Therapy. Front Pharmacol. 2018;9:202–202.

PubMed  PubMed Central  Google Scholar 

Mukherjee, B., et al., Chapter 7 - Multifunctional drug nanocarriers facilitate more specific entry of therapeutic payload into tumors and control multiple drug resistance in cancer, in Nanobiomaterials in Cancer Therapy, A.M. Grumezescu, Editor. 2016, William Andrew Publishing. p. 203–251.

Luo J, et al. Well-defined, size-tunable, multifunctional micelles for efficient paclitaxel delivery for cancer treatment. Bioconjug Chem. 2010;21(7):1216–24.

CAS  PubMed  PubMed Central  Google Scholar 

Salimi, A., B. Sharif Makhmal Zadeh, and M. Kazemi, Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: in vitro and ex vivo studies. Research in pharmaceutical sciences, 2019. 14(4): p. 293–307.

Griesser J, et al. Hydrophobic ion pairing: Key to highly payloaded self-emulsifying peptide drug delivery systems. Int J Pharm. 2017;520(1):267–74.

CAS  PubMed  Google Scholar 

Suchaoin W, et al. Development and in vitro evaluation of zeta potential changing self-emulsifying drug delivery systems for enhanced mucus permeation. Int J Pharm. 2016;510(1):255–62.

CAS  PubMed  Google Scholar 

Chenyakin, Y. and D.D.Y. Chen, Determination of Critical Micelle Concentration of Ionic and Non-Ionic Surfactants by Streaming Potential Measurements. ELECTROPHORESIS. n/a(n/a).

Ram A, et al. Comparative Study of Eudragit RS 100 and RL 100 Nanoparticles as Ophthalmic Vehicle for Fungal Infection. Pharmaceutical Nanotechnology. 2016;4:316–28.

CAS  Google Scholar 

Mudassir J, et al. Design and Evaluation of Hydrophobic Ion Paired Insulin Loaded Self Micro-Emulsifying Drug Delivery System for Oral Delivery. Pharmaceutics. 2023;15(7):1973.

CAS  PubMed  PubMed Central  Google Scholar 

Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83–99.

CAS  PubMed  Google Scholar 

Peppas, N.A. and J.J. Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. International Journal of Pharmaceutics, 1989. 57(2): p. 169–172.

Omari D, et

Comments (0)

No login
gif