Formulation, In Vitro Characterization and Anti-Tuberculosis Investigation of Isoniazid NANOCAPSULES.

Pooneh K, Umme R, Ariyati R, Mohd Z. Innovative therapeutic approaches based on nanotechnology for the treatment and Management of Tuberculosis. Int J Nanomedicine. 2023;18:1159–91.

Article  Google Scholar 

Kumar M, Jha A, Dr M, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin Drug Deliv. 2020;17(10):1459–72.

Article  CAS  PubMed  Google Scholar 

Tuberculosis drugs and mechanisms of action. National Institute of Allergy and Infectious Diseases. https://www.niaid.nih.gov/diseases- conditions/tbdrugs. Accessed March 1, 2023

Mukhtar M, Csaba N, Robla S. Dry powder comprised of isoniazid-loaded nanoparticles of hyaluronic acid in conjugation with mannose-anchored chitosan for macrophage-targeted pulmonary administration in tuberculosis. Pharmaceutics. 2022;14(8):1543.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarkar K, Kumar M, Jha A, Bharti K, Das M, Mishra B. Nanocarriers for tuberculosis therapy: design of safe and effective drug delivery strategies to overcome the therapeutic challenges. J Drug Deliv Sci Technol. 2021;67:102850.

Article  Google Scholar 

Chakaya J, Petersen E, Nantanda R. The WHO global tuberculosis 2021 report–not so good news and turning the tide back to end TB. Int J Infect Dis. 2022;124:S26–9.

Article  PubMed  PubMed Central  Google Scholar 

Eshratabadi P. Effect of different parameters on removal and quality of soybean lecithin. Res J Biol Sci. 2008;3(8):874–9.

Google Scholar 

Nasir MI, Bernards MA, Charpentier PA. Acetylation of soybean lecithin and identification of components for solubility in supercritical carbon dioxide. J Agric Food Chem. 2007;55(5):1961–9.

Article  CAS  PubMed  Google Scholar 

Milwidsky BM, Gabriel DM. Detergent analysis. (A Handbook for cost-effective quality control). Wiley; 1982. p. 187–234.

Google Scholar 

Nielsen SS. Introduction to the chemical analysis of foods. New York: Chapman & Hall; 2002. p. 183–204.

Google Scholar 

Xiong XB, Binkhathlan Z, Molavi O, Lavasanifar A. Amphiphilic block co-polymers: preparation and application in nano drug and gene delivery. Acta Biomater. 2012;8:2017–33.

Article  CAS  PubMed  Google Scholar 

Higuchi WI, Mir NA, Desai SJ. Dissolution rate of polyphase mixtures. Pharm Sci. 1965;54:1405–10.

Article  CAS  Google Scholar 

Korsmeyers RW, Gumy R, Doelker EM, Buri P, Peppas NA. Mechanism of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

Article  Google Scholar 

Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurinm crotiter assay plate: simple and inexpensive method for detection of drug resistance in mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002;46:2720–2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pires CT, Mislane AB, Regiane B, Diogenes A, Luciana D, Vera L, Rosilene F. Anti-mycobacterium tuberculosis activity and cytotoxicity of Calophyllum brasiliense Cambess (Clusiaceae). Mem Inst Oswaldo Cruz, Rio de Janeiro. 2014;109(3):324–9.

Article  Google Scholar 

Hitesh BG, Suresh G, Nitin P. Formulation and characterization of levofloxacin-loaded biodegradable nanoparticles. Asian J Pharm. 2011;2:114–9.

Google Scholar 

Soppimath KS, Aminabhavi TM, Kulkaarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Rel. 2001;70:1–20.

Article  CAS  Google Scholar 

Yaowalak B, Ampol M, Bernd WM. Chitosan drug binding by ionic interaction. Eur Journal Pharm Sci. 2006;62:267–74.

Google Scholar 

British Pharmacopoeia. British Pharmacopoeia, vol. III London Her Majesty’s Stationery Office; 2009. p. 6578–85.

Google Scholar 

Hoffman A, David S, Eran L, Sara R, Eytan K, ichael F. Pharmacokinetic and pharmacodynamic aspects of gastro retentive dosage forms. Int J Pharm. 2004;277:141–53.

Article  CAS  PubMed  Google Scholar 

IUPAC Standard Methods for Analysis of Oils, Fats and Derivatives, 1987; 7th edition.

Gierszewska M, Ostrowska C. Chitosan based membranes with different ionic crosslinking density for pharm and Indaplicatons. Carbohyd Polym. 2016;153:501–11.

Article  CAS  Google Scholar 

Qin H, Wang QQ, Dong L, Zhang X, Zhang ZYM, Han RQ. Reparation and characterization of magnetic Fe3O4–chitosan nanoparticles loaded with isoniazid. J Mag Mat. 2015;381:120–6.

Article  CAS  Google Scholar 

Rojanarat W, Nakpheng T. Levofloxacin – proliposomes-oppurtunities for use in lung tuberculosis. Pharmaceutics. 2012;4:385–412.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramados A, Sathya R, Radhakvishnan. Levofloxacin: formulation and in-vitro evaluation of alginate and chitosan nanospheres. Egypt Pharm J. 2015;14:30–5.

Article  Google Scholar 

Dinakaran M, Senthilkumar P, Yogeeswari P, China A, Nagaraja V, Sriram D. Novel ofloxacin derivatives: synthesis, anti-mycobacterial and toxico-logical evaluation. BioorgMed ChemLett. 2008;18:1229–36.

CAS  Google Scholar 

Shirude PS, Madhavapeddi P, Tucker JA, Murugan K, Patil V, Basavarajappa H. Amino pyrazinamides:novel and specific GyrB inhibitors that kill replicating and non-replicating mycobacterium tuberculosis. ACS Chem Biol. 2013;8:519–23.

Article  CAS  PubMed  Google Scholar 

Zhou SB, Deng XM, Li X. Investigation on a novel core-coated microspheres protein delivery system. J Control Release. 2001;75:27–36.

Article  CAS  PubMed  Google Scholar 

Mani G, Gopi V, Elangovan V, Rajapopalan V, Sengottuvelan B. Isoniazid loaded core shell nanoparticles derived from PLGA-PEG-PLGA tri-block copolymers. In-vitro and in-vivo drug release. Colloids Surf B Biointerfaces. 2013;104:107–15.

Article  Google Scholar 

Comments (0)

No login
gif