Exploring the Anti-Inflammatory Effects of Grape Seed Extract on Depressive Disorder: A Preclinical and Network Pharmacology Approach

Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6:291.

CAS  PubMed  PubMed Central  Google Scholar 

Chandrasekaran V, Hediyal TA, Anand N, Kendaganna PH, Gorantla VR, Mahalakshmi AM, et al. Polyphenols, autophagy and neurodegenerative diseases: A review. Biomolecules. 2023;13:1196.

CAS  PubMed  PubMed Central  Google Scholar 

Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, Ameen SM, et al. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int. 2019;102:1397–400.

CAS  PubMed  Google Scholar 

Ky I, Teissedre P-L. Characterisation of mediterranean grape pomace seed and skin extracts: polyphenolic content and antioxidant activity. Molecules. 2015;20:2190–207.

PubMed  PubMed Central  Google Scholar 

Cádiz-Gurrea M, Borrás-Linares I, Lozano-Sánchez J, Joven J, Fernández-Arroyo S, Segura-Carretero A. Cocoa and grape seed byproducts as a source of antioxidant and Anti-Inflammatory proanthocyanidins. Int J Mol Sci. 2017;18:376.

PubMed  PubMed Central  Google Scholar 

Nallathambi R, Poulev A, Zuk JB, Raskin I. Proanthocyanidin-Rich grape seed extract reduces inflammation and oxidative stress and restores tight junction barrier function in Caco-2 Colon cells. Nutrients. 2020;12:1623.

CAS  PubMed  PubMed Central  Google Scholar 

Sochorova L, Prusova B, Jurikova T, Mlcek J, Adamkova A, Baron M et al. The study of antioxidant components in grape seeds. Molecules. 2020;25.

Habib HM, El-Fakharany EM, Kheadr E, Ibrahim WH. Grape seed Proanthocyanidin extract inhibits DNA and protein damage and labile iron, enzyme, and cancer cell activities. Sci Rep. 2022;12:12393.

CAS  PubMed  PubMed Central  Google Scholar 

Iqbal I, Wilairatana P, Saqib F, Nasir B, Wahid M, Latif MF et al. Plant polyphenols and their potential benefits on cardiovascular health: A review. Molecules. 2023;28.

Bhosale PB, Ha SE, Vetrivel P, Kim HH, Kim SM, Kim GS. Functions of polyphenols and its anticancer properties in biomedical research: a narrative review. Transl Cancer Res. 2020;9:7619–31.

CAS  PubMed  PubMed Central  Google Scholar 

Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and neurodegenerative diseases: potential effects and mechanisms of neuroprotection. Molecules. 2023;28.

Trebatická J, Ďuračková Z. Psychiatric disorders and polyphenols: can they be helpful in therapy?? Oxid Med Cell Longev. 2015;2015:1–16.

Google Scholar 

World Health Organization. Depressive Disorder (Depression). https://www.who.int/news-room/fact-sheets/detail/depression. 2023.

Sipahi H, Mat AF, Ozhan Y, Aydin A. The interrelation between oxidative stress, depression and inflammation through the kynurenine pathway. Curr Top Med Chem. 2023;23:415–25.

CAS  PubMed  Google Scholar 

Kurowska A, Ziemichód W, Herbet M, Piątkowska-Chmiel I. The role of diet as a modulator of the inflammatory process in the neurological diseases. Nutrients. 2023;15:1436.

CAS  PubMed  PubMed Central  Google Scholar 

Mamun A, Al, Shao C, Geng P, Wang S, Xiao J. Polyphenols targeting NF-κB pathway in neurological disorders: what we know so far?? Int J Biol Sci. 2024;20:1332–55.

PubMed  PubMed Central  Google Scholar 

Beere V, Choudhary K, Bisht P, Rai A, Kumar N. Prediction of molecular targets for antidepressant potential of hydroalcoholic extract of Tamarindus indica using network Pharmacology approach and evaluating its efficacy in chronic unpredictable mild stress model in mice. 3 Biotech. 2024;14:232.

PubMed  Google Scholar 

Bohn T. Dietary factors affecting polyphenol bioavailability. Nutr Rev. 2014;72:429–52.

PubMed  Google Scholar 

Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, et al. INFOGEST static in vitro simulation of Gastrointestinal food digestion. Nat Protoc. 2019;14:991–1014.

CAS  PubMed  Google Scholar 

Porrini M, Riso P. Factors influencing the bioavailability of antioxidants in foods: A critical appraisal. Nutr Metabolism Cardiovasc Dis. 2008;18:647–50.

Google Scholar 

Peña-Vázquez GI, Dominguez-Fernández MT, Camacho-Zamora BD, Hernandez-Salazar M, Urías-Orona V, De Peña M-P, et al. In vitro simulated Gastrointestinal digestion impacts bioaccessibility and bioactivity of sweet orange (Citrus sinensis) phenolic compounds. J Funct Foods. 2022;88:104891.

Google Scholar 

Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva Pinto M. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol. 2013;75:588–602.

CAS  PubMed  PubMed Central  Google Scholar 

Foster JA, McVey Neufeld K-A. Gut–brain axis: how the Microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305–12.

CAS  PubMed  Google Scholar 

Luna RA, Foster JA. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Curr Opin Biotechnol. 2015;32:35–41.

CAS  PubMed  Google Scholar 

Sbahi H, Di Palma JA. Faecal microbiota transplantation: applications and limitations in treating Gastrointestinal disorders. BMJ Open Gastroenterol. 2016;3:e000087.

PubMed  PubMed Central  Google Scholar 

Michel L, Prat A. One more role for the gut: microbiota and blood brain barrier. Ann Transl Med. 2016;4:15.

PubMed  PubMed Central  Google Scholar 

Allen AP, Dinan TG, Clarke G, Cryan JF. A psychology of the human brain–gut–microbiome axis. Soc Personal Psychol Compass. 2017;11.

Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the Microbiome. Neurobiol Stress. 2017;7:124–36.

PubMed  PubMed Central  Google Scholar 

Maes M, Leunis J-C. Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: effects of age, duration of illness and the translocation of LPS from gram-negative bacteria. Neuro Endocrinol Lett. 2008;29:902–10.

PubMed  Google Scholar 

Dinan TG, Cryan JF. The Microbiome-Gut-Brain Axis in health and disease. Gastroenterol Clin North Am. 2017;46:77–89.

PubMed  Google Scholar 

Azam S, Jakaria Md, Kim I-S, Kim J, Haque ME, Choi D-K. Regulation of Toll-Like receptor (TLR) signaling pathway by polyphenols in the treatment of Age-Linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol. 2019;10.

Catani M, Dell’Acqua F, Thiebaut de Schotten M. A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev. 2013;37:1724–37.

PubMed  Google Scholar 

Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front Behav Neurosci. 2018;12.

Amalia L, Garyani M, Lailiyya N. Increasing of cortisol level and Neutrophil-Lymphocyte-Ratio are associated with severity level and sleep disturbances in acute ischemic stroke. Int J Gen Med. 2023;16:5439–48.

PubMed  PubMed Central  Google Scholar 

Lee J-W, Kim Y, Il, Kim Y, Choi M, Min S, Joo YH, et al. Grape seed Proanthocyanidin inhibits inflammatory responses in hepatic stellate cells by modulating the MAPK, Akt and NF-κB signaling pathways. Int J Mol Med. 2017;40:226–34.

CAS  PubMed  Google Scholar 

Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine. 2023;90:104527.

CAS  PubMed  PubMed Central  Google Scholar 

Kim H-J, Kim H, Lee J-H, Hwangbo C. Toll-like receptor 4 (TLR4): new insight immune and aging. Immun Ageing. 2023;20:67.

CAS  PubMed  PubMed Central  Google Scholar 

Mahdipour R, Ebrahimzadeh-Bideskan A, Hosseini M, Shahba S, Lombardi G, Malvandi AM, et al. The benefits of grape seed extract in neurological disorders and brain aging. Nutr Neurosci. 2023;26:369–83.

CAS  PubMed  Google Scholar 

Salvadó MJ, Casanova E, Fernández-Iglesias A, Arola L, Bladé C. Roles of Proanthocyanidin rich extracts in obesity. Food Funct. 2015;6:1053–71.

PubMed  Google Scholar 

Martínez-Damas MG, Genis-Mendoza AD, Cruz VP, la, Canela-Tellez GD, Jiménez-Estrada I, Sanchez JHN, et al. Epicatechin treatment generates resilience to chronic mild stress-induced depression in a murine model through a modulatory effect on KAT. Physiol Behav. 2021;238:113466.

PubMed  Google Scholar 

Singleton VL, Rossi JA. Colorimetry of total phenolics with Phosphomolybdic-Phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144–58.

CAS  Google Scholar 

Bridi R, Atala E, Pizarro PN, Montenegro G. Honeybee pollen load: phenolic composition and antimicrobial activity and antioxidant capacity. J Nat Prod. 2019;82:559–65.

CAS  PubMed  Google Scholar 

Oyarzún JE, Andia ME, Uribe S, Núñez Pizarro P, Núñez G, Montenegro G, et al. Honeybee pollen extracts reduce oxidative stress and steatosis in hepatic cells. Molecules. 2020;26:6.

PubMed  PubMed Central  Google Scholar 

Price ML, Hagerman AE, Butler LG. Tannin content of cowpeas, chickpeas, pigeon peas, and mung beans. J Agric Food Chem. 1980;28:459–61.

CAS  PubMed  Google Scholar 

Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified Vanill

Comments (0)

No login
gif