Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6:291.
CAS PubMed PubMed Central Google Scholar
Chandrasekaran V, Hediyal TA, Anand N, Kendaganna PH, Gorantla VR, Mahalakshmi AM, et al. Polyphenols, autophagy and neurodegenerative diseases: A review. Biomolecules. 2023;13:1196.
CAS PubMed PubMed Central Google Scholar
Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, Ameen SM, et al. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int. 2019;102:1397–400.
Ky I, Teissedre P-L. Characterisation of mediterranean grape pomace seed and skin extracts: polyphenolic content and antioxidant activity. Molecules. 2015;20:2190–207.
PubMed PubMed Central Google Scholar
Cádiz-Gurrea M, Borrás-Linares I, Lozano-Sánchez J, Joven J, Fernández-Arroyo S, Segura-Carretero A. Cocoa and grape seed byproducts as a source of antioxidant and Anti-Inflammatory proanthocyanidins. Int J Mol Sci. 2017;18:376.
PubMed PubMed Central Google Scholar
Nallathambi R, Poulev A, Zuk JB, Raskin I. Proanthocyanidin-Rich grape seed extract reduces inflammation and oxidative stress and restores tight junction barrier function in Caco-2 Colon cells. Nutrients. 2020;12:1623.
CAS PubMed PubMed Central Google Scholar
Sochorova L, Prusova B, Jurikova T, Mlcek J, Adamkova A, Baron M et al. The study of antioxidant components in grape seeds. Molecules. 2020;25.
Habib HM, El-Fakharany EM, Kheadr E, Ibrahim WH. Grape seed Proanthocyanidin extract inhibits DNA and protein damage and labile iron, enzyme, and cancer cell activities. Sci Rep. 2022;12:12393.
CAS PubMed PubMed Central Google Scholar
Iqbal I, Wilairatana P, Saqib F, Nasir B, Wahid M, Latif MF et al. Plant polyphenols and their potential benefits on cardiovascular health: A review. Molecules. 2023;28.
Bhosale PB, Ha SE, Vetrivel P, Kim HH, Kim SM, Kim GS. Functions of polyphenols and its anticancer properties in biomedical research: a narrative review. Transl Cancer Res. 2020;9:7619–31.
CAS PubMed PubMed Central Google Scholar
Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and neurodegenerative diseases: potential effects and mechanisms of neuroprotection. Molecules. 2023;28.
Trebatická J, Ďuračková Z. Psychiatric disorders and polyphenols: can they be helpful in therapy?? Oxid Med Cell Longev. 2015;2015:1–16.
World Health Organization. Depressive Disorder (Depression). https://www.who.int/news-room/fact-sheets/detail/depression. 2023.
Sipahi H, Mat AF, Ozhan Y, Aydin A. The interrelation between oxidative stress, depression and inflammation through the kynurenine pathway. Curr Top Med Chem. 2023;23:415–25.
Kurowska A, Ziemichód W, Herbet M, Piątkowska-Chmiel I. The role of diet as a modulator of the inflammatory process in the neurological diseases. Nutrients. 2023;15:1436.
CAS PubMed PubMed Central Google Scholar
Mamun A, Al, Shao C, Geng P, Wang S, Xiao J. Polyphenols targeting NF-κB pathway in neurological disorders: what we know so far?? Int J Biol Sci. 2024;20:1332–55.
PubMed PubMed Central Google Scholar
Beere V, Choudhary K, Bisht P, Rai A, Kumar N. Prediction of molecular targets for antidepressant potential of hydroalcoholic extract of Tamarindus indica using network Pharmacology approach and evaluating its efficacy in chronic unpredictable mild stress model in mice. 3 Biotech. 2024;14:232.
Bohn T. Dietary factors affecting polyphenol bioavailability. Nutr Rev. 2014;72:429–52.
Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, et al. INFOGEST static in vitro simulation of Gastrointestinal food digestion. Nat Protoc. 2019;14:991–1014.
Porrini M, Riso P. Factors influencing the bioavailability of antioxidants in foods: A critical appraisal. Nutr Metabolism Cardiovasc Dis. 2008;18:647–50.
Peña-Vázquez GI, Dominguez-Fernández MT, Camacho-Zamora BD, Hernandez-Salazar M, Urías-Orona V, De Peña M-P, et al. In vitro simulated Gastrointestinal digestion impacts bioaccessibility and bioactivity of sweet orange (Citrus sinensis) phenolic compounds. J Funct Foods. 2022;88:104891.
Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva Pinto M. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol. 2013;75:588–602.
CAS PubMed PubMed Central Google Scholar
Foster JA, McVey Neufeld K-A. Gut–brain axis: how the Microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305–12.
Luna RA, Foster JA. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Curr Opin Biotechnol. 2015;32:35–41.
Sbahi H, Di Palma JA. Faecal microbiota transplantation: applications and limitations in treating Gastrointestinal disorders. BMJ Open Gastroenterol. 2016;3:e000087.
PubMed PubMed Central Google Scholar
Michel L, Prat A. One more role for the gut: microbiota and blood brain barrier. Ann Transl Med. 2016;4:15.
PubMed PubMed Central Google Scholar
Allen AP, Dinan TG, Clarke G, Cryan JF. A psychology of the human brain–gut–microbiome axis. Soc Personal Psychol Compass. 2017;11.
Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the Microbiome. Neurobiol Stress. 2017;7:124–36.
PubMed PubMed Central Google Scholar
Maes M, Leunis J-C. Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: effects of age, duration of illness and the translocation of LPS from gram-negative bacteria. Neuro Endocrinol Lett. 2008;29:902–10.
Dinan TG, Cryan JF. The Microbiome-Gut-Brain Axis in health and disease. Gastroenterol Clin North Am. 2017;46:77–89.
Azam S, Jakaria Md, Kim I-S, Kim J, Haque ME, Choi D-K. Regulation of Toll-Like receptor (TLR) signaling pathway by polyphenols in the treatment of Age-Linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol. 2019;10.
Catani M, Dell’Acqua F, Thiebaut de Schotten M. A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev. 2013;37:1724–37.
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front Behav Neurosci. 2018;12.
Amalia L, Garyani M, Lailiyya N. Increasing of cortisol level and Neutrophil-Lymphocyte-Ratio are associated with severity level and sleep disturbances in acute ischemic stroke. Int J Gen Med. 2023;16:5439–48.
PubMed PubMed Central Google Scholar
Lee J-W, Kim Y, Il, Kim Y, Choi M, Min S, Joo YH, et al. Grape seed Proanthocyanidin inhibits inflammatory responses in hepatic stellate cells by modulating the MAPK, Akt and NF-κB signaling pathways. Int J Mol Med. 2017;40:226–34.
Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine. 2023;90:104527.
CAS PubMed PubMed Central Google Scholar
Kim H-J, Kim H, Lee J-H, Hwangbo C. Toll-like receptor 4 (TLR4): new insight immune and aging. Immun Ageing. 2023;20:67.
CAS PubMed PubMed Central Google Scholar
Mahdipour R, Ebrahimzadeh-Bideskan A, Hosseini M, Shahba S, Lombardi G, Malvandi AM, et al. The benefits of grape seed extract in neurological disorders and brain aging. Nutr Neurosci. 2023;26:369–83.
Salvadó MJ, Casanova E, Fernández-Iglesias A, Arola L, Bladé C. Roles of Proanthocyanidin rich extracts in obesity. Food Funct. 2015;6:1053–71.
Martínez-Damas MG, Genis-Mendoza AD, Cruz VP, la, Canela-Tellez GD, Jiménez-Estrada I, Sanchez JHN, et al. Epicatechin treatment generates resilience to chronic mild stress-induced depression in a murine model through a modulatory effect on KAT. Physiol Behav. 2021;238:113466.
Singleton VL, Rossi JA. Colorimetry of total phenolics with Phosphomolybdic-Phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144–58.
Bridi R, Atala E, Pizarro PN, Montenegro G. Honeybee pollen load: phenolic composition and antimicrobial activity and antioxidant capacity. J Nat Prod. 2019;82:559–65.
Oyarzún JE, Andia ME, Uribe S, Núñez Pizarro P, Núñez G, Montenegro G, et al. Honeybee pollen extracts reduce oxidative stress and steatosis in hepatic cells. Molecules. 2020;26:6.
PubMed PubMed Central Google Scholar
Price ML, Hagerman AE, Butler LG. Tannin content of cowpeas, chickpeas, pigeon peas, and mung beans. J Agric Food Chem. 1980;28:459–61.
Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified Vanill
Comments (0)