Carrageenan Matrix for Sustained Levofloxacin Delivery: Formulation Strategies and Dual Evaluation Approaches

Ali MS, Baboota S, Ahuja A, et al. Formulation and evaluation of sustained release floating tablets of Levofloxacin using hydrophilic polymers. DARU J Pharm Sci. 2014;22:35.

Google Scholar 

Chen Y, Zhang X, Zhang Q, et al. Solubility and dissolution behavior of Levofloxacin in different pH media. Asian J Pharm Sci. 2010;5(4):181–8.

Google Scholar 

Dey S, Ghosh A, Sinha R. pH dependent solubility and stability profile of fluoroquinolones. J Pharm Res. 2015;14(2):89–94.

Google Scholar 

Sahoo S, Chakraborti CK, Mishra SC. Formulation and evaluation of polymeric complexes for controlled drug delivery. J Drug Deliv Sci Technol. 2015;25:75–82.

Google Scholar 

Ahmed M, Kumar V, Das S. Natural polymer-based drug delivery systems. Int J Pharm Sci Res. 2017;8(3):1137–45.

Google Scholar 

Abdullah S, Altwaijry N, Alnakhli M, et al. Novel methotrexate [article]ong-acting system using ambroxol [article]oating and hydroxypropyl Methylcellulose [article]ncapsulation for Preferential and [article]nhanced [article]ung [article]ancer [article]fficiency [Article]. PLoS ONE. 2025;20(1). https://doi.org/10.1371/journal.pone.0314941.

Khan S, Shah FA, Khan GM. Formulation of sustained-release drug delivery systems using polyelectrolyte complexes. J Appl Pharm Sci. 2021;11(3):79–85.

Google Scholar 

Pina MF, Zhao M, Pinto JF, et al. The influence of drug–polymer interactions on the physical stability of solid dispersions. Int J Pharm. 2007;333(1–2):220–31. https://doi.org/10.1016/j.ijpharm.2006.10.045.

Article  Google Scholar 

Raman V, Mallapragada SK. Controlled release of drugs from bioerodible polymers. J Controlled Release. 2001;70(1–2):109–23. https://doi.org/10.1016/S0168-3659(00)00337-3.

Article  Google Scholar 

Reddy LH, Murthy RSR. Floating dosage systems in drug delivery. Crit Rev Ther Drug Carrier Syst. 2002;19(6):553–85. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i6.20.

Article  CAS  PubMed  Google Scholar 

Bhise KS, Dhumal RS, Paradkar AR, et al. Ion exchange resins: novel approach for taste masking and sustained drug release. Indian Drugs. 2012;49(2):7–12.

Google Scholar 

Ghosh A, Dey S, Bhattacharya S. Development of sustained release systems using polyelectrolyte complexes. Int J Drug Delivery. 2016;8(1):56–66.

Google Scholar 

Sharma G, Kaur G. Formulation and characterization of chitosan–alginate based nanoparticulate system for the delivery of Paclitaxel. Int J Biol Macromol. 2020;145:162–73. https://doi.org/10.1016/j.ijbiomac.2019.12.063.

Article  CAS  Google Scholar 

Zhang R, Liu Y, He M, et al. Electrostatic interaction-enhanced loading and release of doxorubicin from functional polypeptide hydrogels. Biomaterials Sci. 2018;6(12):3310–9. https://doi.org/10.1039/C8BM00884D.

Article  Google Scholar 

Rao PR, Reddy MS, Naik AR. Polyanion and amphiphile-based ternary complexes for drug release in acidic environments. J Biomedical Mater Res Part A. 2018;106(7):1810–9.

Google Scholar 

Moghaddam MP, Zohuriaan-Mehr MJ, Kabiri K. Polyelectrolyte complexes and their applications in drug delivery. Polym Rev. 2020;60(4):573–610.

Google Scholar 

Bansal S, Harjai K, Tuli HS. Hydrophilic matrices for oral controlled drug delivery. J Drug Delivery Ther. 2019;9(4–s):865–72.

Google Scholar 

Singh B, Sharma V, Chauhan N. Hydrophilic matrix systems for oral drug delivery: from basics to clinical perspectives. J Drug Delivery Ther. 2022;12(2):72–85.

Google Scholar 

Lee H. Interaction of Levofloxacin with Chitosan derivatives: implications for mucoadhesive drug delivery. Eur J Pharm Biopharm. 2019;138:40.

Google Scholar 

Abdullah S, Bani-Jaber A, Alhakamy NA, et al. Preparation and in vitro/in vivo characterization of sustained-release ciprofloxacin-carrageenan complex. Eur J Pharm Biopharm. 2023;191:78–89. 012. PubMed PMID: 37619955; eng.

CAS  PubMed  Google Scholar 

Singh A, Worku ZA, Van den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv. 2011;8(10):1361–78. https://doi.org/10.1517/17425247.2011.606517.

Article  CAS  PubMed  Google Scholar 

Wang L, Dong J, Chen X, et al. Drug–polymer complex as a strategy for controlled release of poorly soluble drugs. Eur J Pharm Sci. 2018;124:108–17. https://doi.org/10.1016/j.ejps.2018.08.027.

Article  CAS  Google Scholar 

Yun YH, Lee BK, Park K. Controlled drug delivery: historical perspective for the next generation. J Controlled Release. 2015;219:2–7. https://doi.org/10.1016/j.jconrel.2015.10.005.

Article  CAS  Google Scholar 

Patel GH, Patel P, Raj H. Validation of UV spectrophotometric method to determine entrapment efficiency of ocular polymeric nanoparticle Levofloxacin hemihydrate. Res J Pharm Technol. 2021;14(10):5403–8. https://doi.org/10.52711/0974-360X.2021.00938.

Article  Google Scholar 

Yadav A, Kumari P, Yadav J, et al. Optimized Preparation of Levofloxacin loaded polymeric nanoparticles. Recent Pat Nanotechnol. 2019;13(2):142–51. https://doi.org/10.2174/1872213X13666190222111958.

Article  Google Scholar 

Patel DJ, Shah MV, Vavia PR. Co-crystallization of Levofloxacin for improved physicochemical and biopharmaceutical properties. Cryst Growth Des. 2014;14(6):3180–90. https://doi.org/10.1021/cg500456r.

Article  Google Scholar 

Bansal A, Sharma R, Tiwary AK. Swelling and erosion characteristics of natural matrix forming polymers for controlled drug delivery. Indian J Pharm Sci. 2019;81(3):407–14.

Google Scholar 

Abdullah S, Alhakamy NA, AlKhatib HS, et al. Casein and acryl amide [article]omplexation and bio-adhesive polymeric nano micelles [article]nfluence on Vortioxetine dissolution, penetration [article]nhancement and [article]n vivo absorption [Article]. Food Hydrocoll Health. 2024;6. https://doi.org/10.1016/j.fhfh.2024.100189.

Rao VS, Subrahmanyam CVS, Prasad KR. A validated RP-HPLC method for simultaneous Estimation of Levofloxacin and ambroxol in tablet dosage form. J Appl Pharm Sci. 2018;8(06):103–8. https://doi.org/10.7324/JAPS.2018.8614.

Article  Google Scholar 

Hamed R, Obeid RZ, Huwaij RA, Qattan D, Shahin NA. Topical gel formulations as potential dermal delivery carriers for green-synthesized zinc oxide nanoparticles. Drug Delivery and Translational Research. 2025;15(3):885–907. https://doi.org/10.1007/s13346-024-01642-6.

Bani-Jaber A, Alshawabkeh I, Abdullah S, et al. In vitro and [article]n vivo [article]valuation of [article]asein as a drug [article]arrier for [article]nzymatically [article]riggered dissolution [article]nhancement from solid dispersions [Article]. AAPS PharmSciTech. 2017;18(5):1750–9. https://doi.org/10.1208/s12249-016-0650-8.

Article  CAS  PubMed  Google Scholar 

Li R. Carrageenan-based hydrogels for controlled release of small molecules. Mater Sci Engineering: C. 2018;91:196.

Google Scholar 

Almalik A, Donno R, Cadman CJ, et al. PEGylated Chitosan nanoparticles: impact of pegylation on physicochemical and biological properties. Int J Pharm. 2013;456(1):235–44. https://doi.org/10.1016/j.ijpharm.2013.07.082.

Article  Google Scholar 

Berghaus LJ, Giguère S, Sturgill TL, et al. Conjugation of Levofloxacin to carboxymethyl Chitosan enhances antimicrobial activity against intracellular Rhodococcus equi. J Controlled Release. 2010;144(1):1–9. https://doi.org/10.1016/j.jconrel.2010.01.002.

Article  CAS  Google Scholar 

Maddouri L, Khemiss F, Dridi C, et al. Spectroscopic and thermal study of Ciprofloxacin and sodium alginate polyelectrolyte complex. J Mol Struct. 2020;1203:127418. https://doi.org/10.1016/j.molstruc.2019.127418.

Article  Google Scholar 

Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603–32. https://doi.org/10.1016/j.progpolymsci.2006.06.001.

Article  CAS  Google Scholar 

Liu X, Wang H, Zhang X. Characterization of thermal behavior and hydration state of fluoroquinolones using DSC and TGA. J Pharm Sci. 2019;108:1045–52. https://doi.org/10.1016/j.xphs.2018.10.014.

Article  CAS  Google Scholar 

Zhang Y, Chen L, Zhang L. Crystalline structure and thermal properties of Levofloxacin and its inclusion complexes. J Therm Anal Calorim. 2020;139:189–98. https://doi.org/10.1007/s10973-019-08587-1.

Article  Google Scholar 

Costa ROR, Pereira RN, Gonçalves C, et al. Thermal and structural characterization of carrageenan–chitosan polyelectrolyte complexes. Carbohydr Polym. 2018;198:122–30. https://doi.org/10.1016/j.carbpol.2018.06.076.

Article  CAS  Google Scholar 

Nataraj D, Hosamani KM, Aminabhavi TM. Thermal and physicochemical characterization of polymer–drug physical mixtures. J Appl Polym Sci. 2021;138:50342. https://doi.org/10.1002/app.50342.

Article  CAS  Google Scholar 

Abdullah A, Saeed M, Jamshaid H. Pharmacokinetic modeling and in vivo performance of polymeric drug delivery systems. Drug Dev Ind Pharm. 2022;48(3):329–38. https://doi.org/10.1080/03639045.2022.2026273.

Article  Google Scholar 

Sundrarajan M, Ramesh R. Carrageenan-based materials for drug delivery: A review. Int J Biol Macromol. 2012;50(3):263–8. https://doi.org/10.1016/j.ijbiomac.2011.12.018.

Article  CAS  Google Scholar 

Chaudhari SP, Patil PS. A review on: Carrageenan drug delivery systems. Int J Pharm Sci Res. 2012;3(9):2930–8.

Google Scholar 

Rhim JW, Wang LF. Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Appl Clay Sci. 2014;97–98:174–81. https://doi.org/10.1016/j.clay.2014.06.016.

Article  CAS 

Comments (0)

No login
gif