Development of Novel CS/PV/Ni/SCE Combination Hydrogel and Evaluation of their Potential in Drug Delivery and Tissue Regeneration Application

Azarudeen RS, et al. Antibacterial chitosan–copolymer membranes for drug delivery: synthesis, characterization, drug release profile and kinetics. J Chem Technol Biotechnol. 2017;92(7):1659–66.

CAS  Google Scholar 

Panos I, Acosta N, Heras A. New drug delivery systems based on Chitosan. Curr Drug Discov Technol. 2008;5(4):333–41.

CAS  PubMed  Google Scholar 

Subha M. Biodegradable interpenetrating polymer network hydrogel membranes for controlled release of anticancer drug. Asian J Pharm (AJP), 2015: pp. 129–36.

Siddaramaiah, et al. Chitosan/HPMC polymer blends for developing transdermal drug delivery systems. J Macromolecular Sci Part A: Pure Appl Chem. 2006;43(3):601–7.

CAS  Google Scholar 

gounder Subramanian K, Vijayakumar V. Synthesis and evaluation of chitosan-graft-poly (2-hydroxyethyl methacrylate-co-itaconic acid) as a drug carrier for controlled release of Tramadol hydrochloride. Saudi Pharm J. 2012;20(3):263–71.

Google Scholar 

Salgado C, et al. Characterization of Chitosan and Polycaprolactone membranes designed for wound repair application. J Mater Sci. 2012;47:659–67.

CAS  Google Scholar 

Saikia JP, et al. Nickel oxide nanoparticles: a novel antioxidant. Colloids Surf B. 2010;78(1):146–8.

CAS  Google Scholar 

Madhu G, et al. Defect dependent antioxidant activity of nanostructured nickel oxide synthesized through a novel chemical method. Colloids Surf A. 2013;429:44–50.

CAS  Google Scholar 

Kannan K, et al. Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg Chem Commun. 2020;113:107755.

CAS  Google Scholar 

Iqbal J, et al. Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl Organomet Chem. 2019;33(8):e4950.

Google Scholar 

Muruganantham N et al. Pharmacological potential of nickel nanoparticles using Tribulus Terrestris plant extracts (Stem).

Kumar LV, Sunitha S, Rathika Nath G. Antioxidant, antidiabetic and anticancer studies of nickel complex of Vanillin-4-Methyl-4-Phenyl-3-Thiosemicarbazone. Mater Today: Proc. 2021;41:669–75. https://doi.org/10.1016/j.matpr.2020.05.376.

Article  CAS  Google Scholar 

Selmi A, et al. Crystal structure, magnetic study, and antidiabetic activity of Ni (II) complex with N, O-Donors ligands. Cryst Res Technol. 2022;57(11):2200102.

CAS  Google Scholar 

Özçelik S, et al. Structure, magnetic, photocatalytic and blood compatibility studies of nickel nanoferrites prepared by laser ablation technique in distilled water. J Alloys Compd. 2021;854:157279. https://doi.org/10.1016/j.jallcom.2020.157279.

Article  CAS  Google Scholar 

Peng M, et al. Dealloying and polydopamine/silver coating on NiTi alloy for improved antibacterial activity. Mater Chem Phys. 2023;305:127939.

CAS  Google Scholar 

Ruan ZP, Zhang LL, Lin YM. Evaluation of the antioxidant activity of Syzygium cumini leaves. Molecules. 2008;13(10):2545–56.

CAS  PubMed  PubMed Central  Google Scholar 

Saharan R, et al. Beyond traditional hydrogels: the emergence of graphene oxide-based hydrogels in drug delivery. J Drug Deliv Sci Technol. 2024;94:105506. https://doi.org/10.1016/j.jddst.2024.105506.

Article  CAS  Google Scholar 

Kapoor DU, et al. Pectin hydrogels for controlled drug release: recent developments and future prospects. Saudi Pharm J. 2024;32(4):102002. https://doi.org/10.1016/j.jsps.2024.102002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh V, et al. Hybrid hydrogels derived from renewable resources as a smart stimuli responsive soft material for drug delivery applications††electronic supplementary information (ESI) available. See DOI: 10.1039/d1ra08447j. RSC Adv. 2022;12(4):2009–18. https://doi.org/10.1039/d1ra08447j.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farooq K, et al. Synthesis, optimization, and multifunctional evaluation of amla-based novel biodegradable hydrogel. Polym Bull. 2024;81(12):10681–705.

CAS  Google Scholar 

Farooq K et al. Synthesis and characterizations of amla-based novel hydrogel matrix for the targeted and controlled release of the anticancer 5-fluorouracil drug. Colloid Polym Sci, 2025: pp. 1–17.

Benherlal PS, Arumughan C. Chemical composition and in vitro antioxidant studies on Syzygium cumini fruit. J Sci Food Agric. 2007;87(14):2560–9.

CAS  PubMed  Google Scholar 

Banerjee J, Narendhirakannan R. Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities. Dig J Nanomater Biostruct. 2011;6(3):961–8.

Google Scholar 

Bitencourt PER, et al. A new biodegradable polymeric nanoparticle formulation containing Syzygium cumini: phytochemical profile, antioxidant and antifungal activity and in vivo toxicity. Ind Crops Prod. 2016;83:400–7. https://doi.org/10.1016/j.indcrop.2016.01.007.

Article  CAS  Google Scholar 

Wang Z, et al. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9(10):e435–435.

CAS  Google Scholar 

Murphy WL, et al. Sustained release of vascular endothelial growth factor from mineralized Poly (lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2000;21(24):2521–7.

CAS  PubMed  Google Scholar 

Uz M, et al. Development of multifunctional films for peripheral nerve regeneration. Acta Biomater. 2017;56:141–52.

CAS  PubMed  Google Scholar 

Hosseini SMR, et al. Carboxymethyl cellulose/sodium alginate hydrogel with anti-inflammatory capabilities for accelerated wound healing; in vitro and in vivo study. Eur J Pharmacol. 2024;976:176671. https://doi.org/10.1016/j.ejphar.2024.176671.

Article  CAS  PubMed  Google Scholar 

Bhangare D, et al. Systematic strategies for degradation kinetic study of pharmaceuticals: an issue of utmost importance concerning current stability analysis practices. J Anal Sci Technol. 2022;13(1):7.

Google Scholar 

Tapkir N et al. A comprehensive review on assessment and key control strategies for impurities in drug development with a special emphasis on post-marketing surveillance. J Pharm Innov, 2021: pp. 1–20.

Pokar D, Rajput N, Sengupta P. Industrial approaches and consideration of clinical relevance in setting impurity level specification for drug substances and drug products. Int J Pharm. 2020;576:119018.

CAS  PubMed  Google Scholar 

Rehman Q et al. Stability of pharmaceutical products. Drug Stab Chem Kinetics, 2020: pp. 147–54.

Elia R, et al. Conventional versus regenerative methods for wound healing: A comparative experimental study on a sheep model. Med (Kaunas). 2024;60(11). https://doi.org/10.3390/medicina60111836.

Jin S, et al. Progress of hydrogel dressings with wound monitoring and treatment functions. Gels. 2023;9(9):694.

CAS  PubMed  PubMed Central  Google Scholar 

Yu C, et al. Injectable hydrogels based on biopolymers for the treatment of ocular diseases. Int J Biol Macromol. 2024;269:132086. https://doi.org/10.1016/j.ijbiomac.2024.132086.

Article  CAS  PubMed  Google Scholar 

Weng J, Tong HH, Chow SF. Vitro release study of the polymeric drug nanoparticles: development and validation of a novel method. Pharmaceutics. 2020;12(8):732.

CAS  PubMed  PubMed Central  Google Scholar 

Oyama HT, Tanishima D, Ogawa R. Biologically safe Poly (L-lactic acid) blends with tunable degradation rate: microstructure, degradation mechanism, and mechanical properties. Biomacromolecules. 2017;18(4):1281–92.

CAS  PubMed  Google Scholar 

Kumar S, et al. Controlled drug release through regulated biodegradation of Poly (lactic acid) using inorganic salts. Int J Biol Macromol. 2017;104:487–97.

CAS  PubMed  Google Scholar 

Lou T, Wang X, Song G. Fabrication of nano-fibrous Poly (l-lactic acid) scaffold reinforced by surface modified Chitosan micro-fiber. Int J Biol Macromol. 2013;61:353–8.

CAS  PubMed  Google Scholar 

Li L, Ding S, Zhou C. Preparation and degradation of pla/chitosan composite materials. J Appl Polym Sci. 2004;91(1):274–7.

CAS  Google Scholar 

Ayyanar CB, et al. In-vitro and in-vivo investigation of wound healing efficacy of Syzygium cumini leaf extracts loaded carboxymethylcellulose film. Int J Biol Macromol. 2024;275:133691. https://doi.org/10.1016/j.ijbiomac.2024.133691.

Article  CAS  PubMed  Google Scholar 

Priyamvadan A et al. Chitosan PVA and Acalypha indica-based nanoformulation for antimicrobial activity against Staphylococcus aureus. Polym Bull, 2023: pp. 1–18.

Jaisankar E, et al. Dual property of Chitosan blended copolymer membranes: antidiabetic drug release profile and antimicrobial assay. Int J Biol Macromol. 2020;145:42–52. https://doi.org/10.1016/j.ijbiomac.2019.12.038.

Article  CAS  PubMed  Google Scholar 

Arumugam M, et al. Dual therapeutic approach: biodegradable nanofiber scaffolds of silk fibroin and collagen combined with silver and gold nanoparticles for enhanced bacterial infections treatment and accelerated wound healing. J Drug Deliv Sci Technol. 2024;95:105620. https://doi.org/10.1016/j.jddst.2024.105620.

Article  CAS 

Comments (0)

No login
gif